DRAFT 5/12/97

a

A
X200
Software Ar* nition

ne 15,1997

A Cooperative Effort
by the Unified Flight / Ground Architecture Team

X2000 Software Architecture Definition

Contents

5/12/97

1 Introduction
2 Document Objectives

3 Design Guidelines

3.1 Support a Wide and Increasingly Challenging Range of Missions 8

3.1.1 Flexible and Adaptable Software Components
3.1.2 Adjustable Hardware and Software Infrastructure
3.1.3 Capability in Layered Increments
3.2 Unifying Paradigms
3.2.1 Goal Directed Behavior
3.2.2 Weak Coupling
3.3 Facilitate Integration and Test
3.3.1 Parallel Development and Test of Components
3.3.2 Layered Operation
3.3.3 Integral Test Software Architecture
3.3.4 Inclusion of Operations in the Test Support System
3.4 Accommodate a Dynamic Development Environment
3.4.1 Late Scope Adjustments
3.4.2 Design Changes
3.5 Define a Clear Evolutionary Path for Advancement
3.5.1 Migration of Capability Between Ground and Flight
3.5.2 Reusable Components
3.5.3 Promoting Design for Reusability

4 An Approach to Layered Design

4.1 Flight
4.1.1 Basic Systems
4.1.2 Cooperative Interaction of Functions
4.1.3 Coordination in Time
4.1.4 Deliberation
4.1.5 Distributed Systems

4.2 Ground

4.3 Test

X2000 Software Architecture Definition

5 Software Structure
5.1 Object-oriented Modularity
5.1.1 Hybrid Approach
5.1.2 Object Interactions
5.2 Inter-object Communication Standards
5.2.1 Layered Hierarchy
5.2.2 Standard Methods
5.3 Object Domains
5.4 “Real Time” Execution
5.4.1 Efficient Cyclic Task Support
5.4.2 Events Driven Tasks
5.4.3 1/O
5.5 Fault Protection (Function Preservation)
5.5.1 What is fault protection?
5.5.2 Architecture for Component-Level Fault Protection
5.5.3 Strategy
5.5.4 Local FDIR
5.5.5 Escalation through Hierarchy
5.6 Operation
5.6.1 Startup and Shutdown
5.6.2 Maintenance
5.6.3 Selective Enabling of Control Layers
5.7 User Interfaces
5.8 Test
5.8.1 Simulation
5.8.2 Monitoring

6 Functional Areas

6.1 Commanding
6.1.1 Goal Directed Behavior
6.1.2 Versatile Task Specification
6.1.3 Level Of Autonomy
6.1.4 Execution Logging

6.2 Hardware Management
6.2.1 State Tracking

5/12/97

35
35
36
36
39
41
48
48
49
50
51
51
51
51
52
53
54
54
55
55
55
55
56
56
56
57

58
58
58
62
63
64
64
64

X2000 Software Architecture Definition 5/12/97

6.2.2 Configuration Control 64
6.2.3 Consumable tracking 64
6.3 Data Management and Telemetry 64
6.3.1 File Management 66
6.3.2 Telemetry 66
6.3.3 Data Management 66
6.3.4 Mechanism for Feedback into Subsequent Activity Plans 66
6.3.5 “Beacon mode” 66
6.4 Guidance, Navigation, and Control 66
6.4.1 Pointing System 66
6.4.2 Navigation 66
6.4.3 Maneuver Planning 66
6.4.4 Dealing with Constraints 66
6.5 Power and Thermal Management 66
6.6 Telecom 66
6.7 Science 67
6.8 User Interface 67
6.9 Test 67
7 SOFTWARE VERIFICATION 67
7.1 Cut 1 67
7.1.1 Testable requirements 67
7.1.2 Scenario specifications 68
7.1.3 Detailed simulation environment 68
7.1.4 Unambiguous interface definitions 68
7.1.5 Embedded constraint tests 68
7.1.6 System-level behavior auditing 68
7.1.7 Safety kernel 69
7.1.8 Incremental builds and automated regression testing 69
7.1.9 Code inspections 69
7.2 Cut 2 69
7.2.1 Verification and Validation 69
8 Hardware Requirements 71
8.1 Modelable Behavior 71
8.1.1 “Delta” Commands Restrictions 71

X2000 Software Architecture Definition 5/12/97

8.1.2 Time 71
8.2 Self Safing 71
8.2.1 Reset to benign, passive state 71
8.2.2 Regular software access necessary to sustain active states 71
8.2.3 Protected access to critical functions 71
8.3 Fault Protection 71
8.3.1 Internal detections and responses 71
8.3.2 Containment regions 72
8.3.3 Isolation 72
8.4 Redundancy 72
8.4.1 Symmetry 72
8.4.2 Independence 72
8.4.3 Cross Strapping 72
8.5 Bus and Network Issues 72
8.5.1 Master Selection 72
8.5.2 Masquerading Terminals 72
9 Appendix A — Definitions 72
9.1 Software Architecture 72
9.2 Autonomy 73
9.3 Object-Oriented Software 73
10 Appendix B — Examples 74
10.1 Model Based Software Design 74
10.1.1 Fault Protection Monitoring 74
10.1.2 Software State Charting 75
11 NEW MATERIAL NOT YET INCORPORATED 75
11.1 Planning, Deliberation, And Goal-Based Commandirirror! Bookmark not defined.
11.1.1 Deliberation 66
11.1.2 Resource Management 67
11.1.3 Unpredictable Resource Usage 67
11.1.4 Nested Layers of Control 68
11.1.5 Goal Directed Behavior 68
11.2 Modeling 73
11.2.1 Introduction (For Vendors) 73

X2000 Software Architecture Definition 5/12/97

11.2.2 General 73
11.2.3 Architecture, Inputs, Outputs, Design: 73
11.2.4 Sensors / Observables: 74
11.2.5 Monitoring: 74
11.2.6 Modes & Transitions: 75
11.2.7 Operational Constraints: 75
11.2.8 Resource Usage, Environmental Impact, Life Span: 76
11.2.9 Faults, Failures, Recoveries: 76
11.2.10 External / Exogenous Events: 76
11.2.11 Complexity / Cost Estimates: 77
11.3 Resource Arbitration 78
11.4 Architecture 79
11.4.1 Introduction 79
11.4.2 Document Objectives 79
11.4.3 Design Guidelines 79
11.4.4 An Approach to Layered Design 79
11.4.5 The Software Design 79
11.4.6 Functionality 95
11.4.7 Verification (and Testing) 95
11.4.8 Implication for Hardware Architecture 95
11.4.9 Project Issues 95
11.4.10 Conclusions 95
11.5 Modularity 96
11.6 Inter-object Communication 99
11.7 Uplink System Design / Command & Control Capabilities 101
11.8 Information Systems Architecture 107
11.9 Data Management and Telemetry 113
11.10 Scaleable & Flexible Sequence 115
11.10.1 Introduction: 115
11.10.2 Incremental Implementations: 115
11.10.3 Phase 1. Time BasedSequence (seefig. 1 time based sequence
example) 116
11.10.4 Phase 2: Close Loop ConditionalSequence(seefig. 3 time based
conditional sequence example) 119
11.10.5Phase 3: Event Driven Sequence (seefig. 4 event driven sequence
example) 120

X2000 Software Architecture Definition 5/12/97

11.11 Human organization 121

11.12 Development Environment 122

11.13 Java and Java Beans: A Component Architecture for Java at JRI27

11.14 JTAG testability 134
0

1 Introduction

Unmanned exploration places peculiar demandthesystems we send tother planets

and the remote reachessgace.They must beextremely reliable in the face of an often
poorly understood environment. They must operate for long stretches without intervention.
And theymust be self-sufficient in their dealings with failures and other calamities. The
extent ofour exploration islimited by the level olutonomythat we carendow. This in

turn depends on the sophistication and adaptability of the software that serves as our proxy,
managing these systems and carrying out the desired tasks.

In the future wewould like to move intocloser contact with the objects of space
exploration, exploringsurfaces, atmospheresnd otherrealms, fielding more complex
instruments, and moving farther into distapace More ambitiousmissions puslgreater

demands upon this software.

Managing the resulting complexityas forced us to abandon owmell worn but limiting
approach to software design for these systems. It habetsme imperative to reduce the

cost and time spent on their development. Both considerations have resulted in the creation
of a task to generatereew softwarearchitecturdor future missions.This task haseen
initiated by the X2000 program and is the subject of this document.

(0]

2 Document Objectives

This documentvas conceived to describe the ttgvel goals andechnicalapproach for a
Unified Flight/GroundArchitecture(UFGA) for software [See “Softwar@rchitecture” in
Appendix A — Definitions]. It is not a specification from whiclparticulardesignmight
be producedbut rather isneant toexpose issuethat potentiadesigns musaddress, to
promote general principles and features deemed important lmontsibutors, and to
suggest a general framework that may accomplish these objectives.

The intended scope of this effort is broad, including both engineering and instifligient
software, ground software for spacec@eration and monitoring, and tesiftware for
all levels of integrationThe unifying themeamong these areas is that thadlyplay an
operative role in the activities of a spacecraft or other remote vehicle atismiring its
life span.

This document is divided into sections whathdressnajor aspects adesign,beginning
with generaldesign guidelines. This is followed by a discussiongeheral software

X2000 Software Architecture Definition 5/12/97

methods that apply all levels. Then theissuesassociated witleach of several particular
functional areas is addressed.

This is adraft version ofthe dbcument. Commentsyiticisms (graciously offered), and
contributions to its content are welcome.

3 Design Guidelines

The following objectives do not in themselvegectly dictateany software architecture.
They state higHevel attributeswhich would beachieved ideally(in the view of the
contributors) by any desigmeeting the programmatiand technical challenges facing
future space exploration.

3.1 Support a Wide and Increasingly Challenging Range of
Missions

Many missions in the near future will still involve flying by bodies, or rendezvouwgitig

themand orbiting around them. Eventually, landers and surface rasMeisecome more
common, and other sorts ofobile platforms, such as balloons evensubmarines, may
be necessanBample return vehicles may be requiredtimg the rewards homeThese

systemsamay work in partnership with orbiters or others tbkir kind. In interplanetary

space large aperture experiments involving closely coordingtedips ofspacecraft will

be flying.

Thesemissions vary inthe degree ofjyround visibility and controlthat is possible, the
complexity andmmediacy of theequiredtasks,the uncertainty of the environment with
which they mustcontend,the reliability theymust achieve, anthe limitations of their
physical resources.They will also vary inthe level of technology available at their
inauguration, the extent to which inherited elements impose constraitits design, and

the cost and schedulavailablefor implementation. These featuralt bear directly and
substantially on the softwaapabilities required teupport them. Apainful consequence

has been the wasteful proliferation of systems and approaches populating past programs.

One measure dfuccess ofhe UFGA will be the range ofmissions it isable tosupport,
especially if its utilization arises, not as an imposition, but rather as a result of free selection
by implementerdor its attractivefeatures.The architecturenust therefore have attributes
conducive to wide applicability. These include the following.

3.1.1 Flexible and Adaptable Software Components

The architecturenustpermit a variety of implementations so it may be tailored cleanly to
particular applications.

At the software componenievel this meansthat the following adjustments should be
relatively easy:

X2000 Software Architecture Definition 5/12/97

* The capabilities of each component can be adjusted to meet feldtelfferent
needs.

» Alternate implementations can be substituted within each area of functionality.
* Nonessential functions can be removed.
* New components, not previously anticipated, can be added.

One essential factor ichoosingthe granularity of the functionadlivision such that

separable functionare not intermingled in the sanm®mponent.Another is avoiding
duplication among componentuch that consistency is difficult to maintain, while
avoiding a design that unnecessarily couples component implementations.

3.1.2 Adjustable Hardware and Software Infrastructure

In addition,elements of the architecture infrastructanest also be adjustable. It should
move easilyacross avariety of computing platformgvhere any ofthe following might
change (within certain prescribed but not overly tight constraints):

» Processor speed, type, and quantity

* Memory and mass storage architecture

* Networking, signaling, and general I/0O architecture
» Core operating system

» Operating system support structures

3.1.3 Capability in Layered Increments

The UFGA must beable tosupportelaboratemissions inuncertain environments at one
extreme whilealso capturingelatively simple applicationwith the least ofrequirements.

This is a broad spectrum for which no single paradigm applies. As complexity is added, the
necessary structure required to organize matageproblemscan shift dramatically in
character. We see this ieal world examples, such dsological and economisystems,
where nested layers of control have evolved, each manifesting itself in different ways, from
chemical processes at one end to governmental regulationah#re Nevertheless)l of

these layers interact in a structured manner that productively unifies the entire collection.

Rather than identifying a suite of architectures weiichmost suitable to a restricted range
of application, we prefer to learn from natural examples by proposing a uaniieitecture
that spansthe entirerange, to beaccomplished by partitioning functionality in a layered
manner and applying the appropriate paradigm to €ddhs statement, at this point in the
document, needs more justification to be compelling. A hierarchidalyered organization
iS not necessarilypetter than an organization of interactiraggents, but it may be more
comfortablemodel. Actually, as | read itater sctions, | think yolthave avery good
rationale for layered organizationand maybe it just needs to be summaribede.” —
Dvorak] This mustreflect communication and contriglsues for a broadange ofremote
mission complexity and it mustfacilitate functional migration. Consequently, the
architectureshould becompletely viablewith justthe lowest layelor two, or three, ...)
residing on the fielded system (and its subordinates, if any).

X2000 Software Architecture Definition 5/12/97

In this manner the architecture captures even the simplest reystéens, whichmay then
be viewed merely aarboringthe lowest levetomponents of a fulUFGA architecture,
the bulk of which happens to reside elsewhere.

At the opposite extreme, a fully autonomous rensytgem which receives only very high
level instruction from the ground can also have essentiallfhe same full UFGA
architecture, exceghat inthis casethe bulk of it resides orboard. Nevertheless, the
lowest components in this interconnecgydtem should shatee same basic role as their
counterparts in simple systems.

Intermediate cases can also be envisioned. For instaartia) autonomyesults where all
but the highest levels of the system fly. In another example, one orlomofevel remote
systems (e.g.some aerobotspay be guidedrom a cetral remote sit€e.g., anorbiter)
with more autonomous capabilityhe strength ofthe architecture will be in itability to
divide and realign as necessary to meet these various needs.

3.2 Unifying Paradigms

A few useful principles can guide an effective layered architecture.

3.2.1 Goal Directed Behavior

In a layered architecture each layer in performing its functions depends in large measure on
discountingthe fine details oflower layers,including the uncertainty anthcomplete
knowledge confronting them. Trmakethis possiblegach component in tHewer layers

must perform actions which make its behavior predictable in some bowetisg despite

the difficulties. It must continually correct its behavior iesponse tgerceivedevents,
presenting a somewhadealized behavior to layers above whidre notprivy to the
numerous actions required to mask the uncertainties. The resulting actions are therefore not
directly dictated by the higher layer, but rather fall as a consequence of a more abstract goal
established by the higher layer in conjunction with the conditions encountered.

This reflexive application oocal feedback isiecessary atach layer until at thbighest
layer operators ofhe systembecome the gogbroviders.Any compromise tahis goal
directed commanding at each layer by directly interveninipwrer layers withexplicitly
commanded actions can only create havoc with the overall architecture.

3.2.2 Weak Coupling

Peer level interactions with other components are among the uncertaittti@ghich each
component must cope. As peers therkess opportunity teeactfruitfully to the behavior

of other components for which mtirect control may b@ossible. Attempts to do so may
becomechaotic, or unstable, and deadlocies arisewherelittle progress is made. The

role of higher layers is to put some form on these interactions, but this becomes
unmanageable if the interactions am@merous or complex. Therefore, coupliaghong
components must be minimized by making components tolerant to defects in their peers and
by requiring components to contain the effects of local problems if possible.

10

X2000 Software Architecture Definition 5/12/97

3.3 Facilitate Integration and Test

Systems to be captured by the UFGA are complex. They consisihidrous components
spanning flight, operations, aridst systems. It igmportant that thessystems not be
designed in a manner that requires large portions of the system to be present for meaningful
integration and test toccur. It is alsamportant that the verification of thgystem be

largely possible through the independent assessmeibsets atach level of integration
without having to repeat these verificatidos the system at large. Otherwise, enormous
analytical effort is required throughouhe development tassurethe success of a late,
intense, and usually unsatisfying integration.

3.3.1 Parallel Development and Test of Components

Facilitating integration and tesequires a reasonably decoupled design with software
components that are self-contained to the extent possible. Once this has been accomplished,
however, theactions of a component must be carefdélineatedsuchthat there is never

any ambiguity in the state of tltemponent, and sudhat each action on the component
moves it unambiguously from orstate toanother. To achieve this, discipline must be
imposed on the implementation of each component, ideally throudbdiseused tareate

it. This will enable a rigorous definition dfie actions of each component that can then be
tested and verified at the component level.

3.3.2 Layered Operation

Once avoidable dependencies have been eliminated, it may still neade to test a
component in isolatiorgspeciallywhen acomplex sequence of interactions are involved
that are difficult to generate analytically. To create a realistic test, each component generally
requires some representationtbé interfaces above that contigl and often requires a

fairly accurate dynamical representation of its peers aafl tie components below that

it controls. Various strategiegor dealing with this problencan be enhanced if the
architecture supports them.

Interface Visibility

It should be possible to intercept datakinterfacesfor examination. This shoulithclude
enough information to expose relationships between traffic on different interfaces and
activities in any encompassing environment.

Incremental Assembly

It should be possible to assemble the architecture from the lowest lgyarsssingupper
layers being replaced by tasivers enablingexplicit exercise of théayers present.This
has a number of benefits:

» It aids testing bylimiting the scope inthe beginning to a managealdel, and
allowing each subsequent layer to build on a solid, verified foundation.

» It enhances the level of control available for testing components in eachathgr,
than having to rely on indirect means.

* It gets integration started earlier when problems are easier to correct.

11

X2000 Software Architecture Definition 5/12/97

* It provides more programmatic flexibility for deliveries.

» It encourages the layering approach desired for reasons of adaptability, as described
above.

Variable Fidelity Execution
It should also be possible to assemttlie architecturdrom the highest layersiown,

missing lower layers beingeplaced by reduced fidelity models loéhavior. This has a
number of benefits as well:

It permits a far larger number of scenarios toritse on highlevel functions for
which the details of operation &w levels are generally ngand should not be)
important.

* It provides a basis for comparis@gainst whichthe behavior oflower level
functions can be verified.

» It enables the architecture to play a feasible role in hitgghesl simulations of
mission activities.

* It complements and directly benefits frothe model based design methods
described below.

Substitution Testing

It should be possible to assemble the architecture on the “fligintiware, on gimulation

of the “flight” hardware, or on aelatively arbitrary mixture of théwo. For missing
hardware elements, the level of replacement should be selectable, taking place directly at the
hardwareinterface or higher into theoftware hierarchy, as appropriaiéhe benefits of

this are as follows:

* Hardware interfaces can be tried early, before “flight” hardware is available.

» If problems arise, the interface can be broken highlgoye the site of the problem
to enable continued testing while the problems are resolved.

» Testing is not as vulnerable &huffling hardware configurationgspecially if
hardware must be pulled for repair or rework.

3.3.3 Integral Test Software Architecture

It is apparent thatluring testthe boundary betweeflight and testsoftwarewill become

quite indistinct in many configurations. This is entirely appropriate, since the lines between
reality and simulationfall upon the sameboundaries aghe layering of the overall
architecture describeehrlier.Over thecourse of testing, amore of thesystem is put in
place, this line gradually moves outwardttie hardware and then beyond tthe physical
interface between theardware and its environmerigter to be displaced entirely by the
reality at launch. Until this last step there is a component of the support envirdhatest
retained through each stage. Continuity should be retained thoughout for those
components spannintgst stages with no need to change simulatfwdels, support
equipment, or other elements of the support system.

12

X2000 Software Architecture Definition 5/12/97

Likewise, the testsupport system must be antegral part of the entiresoftware
developmenprocess ot just aparallel effort that meets the flightoftware at soméater
stage in thelevelopmentThe same incremental approadlst be followed tanake test
capability available from the start, as needed by the flight development.

3.3.4 Inclusion of Operations in the Test Support System

To be a truly unified architecture for flight and ground, the test environment must transition
seamlessly into flight with operations providing equivalempport to both arena3his
makes the operatiorsoftware areffective subset ofthe testsupport system, so must
effectively supportthe system throughout development. In essemgeeration software
should becomewhat is left of the support enviroment atlaunch. Giventhe layered
architecturewhereby portions othe operationscapability may beshifted to flight (or
conversely), itbecomes doublglear that thebasis for distinguishinggmongflight, test,

and operation software is vanishing with these areas comprising notiarey than a
partitioning of components to different physical locations in an otherwise homogeneous
software architectureThe recognition of this must become both technical and
programmatic in order for a unified architecture to succeed.

3.4 Accommodate a Dynamic Development Environment

There isalways a danger with any effolike the UFGA that it will become rapidly
obsolete, serving more as a detriment to progress than a help. An ability to easily adapt and
grow from mission to mission haseen described. Asimilar flexibility is required,
however, even within the scope of a single mission. As a system progressesriaapt

to implementation to flight many adjustments in Hwdtware approackvill have to be

made. Software is often left scurrying at the last minute to make the final accommodations.

To avoidthis, the architecturenust benimble andlean. It must not be a overbearing,
feature laden behemoth that moves only \&ittuous coaxing. Followingre some of the
situations that must be easily supported.

3.4.1 Late Scope Adjustments

Experience tells us that the scope of a software development effort can be quite dynamic.
Reductions

When well laidplans goawry, it may benecessary to exertlawer level of control than
originally intended. This may happen during development if obstacles are encountered, or it
may happen in flight if difficult problems force close intervention.

Should such aituationarise,the steps necessary to shifte level of controlearthward
should be safe and simplessentially through g@rocess oflifting upper layers of the
architecture. This should expose maerface not thwughly exercised during the

incremental integration and test process. This implies that flight/ground communication can
be inserted between any two layers.

13

X2000 Software Architecture Definition 5/12/97

Enhancements

Planning will occasionally ngtermit the development of full capability at an eastage.
This could be a consequence of problems, or it could lukeliberatestep to shift
development efforts off the critical path into a quiet period of interplanetarge. Orvery

long flights theremay even be a notiathat waiting is bettefor the program by allowing
technology to progress further before development choices are made.

The steps necessary tonlence capability may include replacement sdftware
components, or the shifting of control back to the fligggtem. Both should be supported
in a graceful manner with any addeabability exploiting existing flight interfaces to the
extant capability.

3.4.2 Design Changes

Software changes frequently due to changes in hardware design or to refinements in our
understanding of its operation and failure modes. This is hard@ctonmodate if there is

no explicit representation of theardware inthe software design. If onlythe analytic
byproducts of our hardware models reside in software, then every hardwarectiesige

forces us to revisikachconclusion, procedure, andst — aprocessthat can never be
thorough.

Model Based Design

Part ofthe solution to this problem is converging d¢ime correctknowledge of hardware
behavior sooner and more precisely than we have imppagtams.Model based design is
a key tool inaddressing thisnotive and is rapidly gaining momentum as thesign
paradigm of future programs.

Model based design will allow hardware designeraddress issueand find problems at
an early stage by giving them an executable specification afeignthat can be engaged
with other models. Integration starts much sooner, giving softderelopment the lead it
needs and giving it an opportunity temain current. The modelsalso provide a less
ambiguous truth test against whitie behavior ofactual hardwarecan be gauged.
Moreover, it will be more difficult foist hardware idiosyncrasigsonthe software as not
strictly forbiddenbehavior, whereas angeparture from a model will be viewed as
exceptional.

Model Based Implementation

The same modeling effoused for desigwan have an immediate impact on Huftware

design if the software is prepared to take models as direct input. One level of realization this
might consist of automatic code generators working from a model of the desired component
functionality. Mature tools of this sort are presently available.

In a more idealizecconception,the flight software would be comprised afeneric
“engines” and models of thieardware and environmenAll other behaviorwould be
derived by inference, given the goals of the system. In reality, this cannot presently be fully
achieved in a practicalay, but with specialized representationstiad models, supported

by additional heuristics and guidance from designers, substantial strides havealeen

this direction.

14

X2000 Software Architecture Definition 5/12/97

Advancement in modebased design andhodel based software@mplementation are
harmonious objectives which should be supported by the UFGA. More will be said later on
this subject in the context of software reuse.

3.5 Define a Clear Evolutionary Path for Advancement

Each new program iempted to starinew with every softwardevelopment rather than
building upon past efforts in a process of continuous refinement. Twwee afbstaclethat

have stood inthe way of thismore rational approach are fundamental incompatibilities
between present flight and ground architectures, and a uniform method of partitioning and
design that makes functionality available in an easily reusabie This hasmade itvery
challenging to evaluate trgiccess antherits of asoftware design. Arincipledbasis of
software design evaluation is essential to analyze wBpexific improvements are
necessary, and to find where opportunitiesalternativesolutions existThe architecture
principles required to gain these properties are described below.

3.5.1 Migration of Capability Between Ground and Flight

The trade between flight and ground implementation involves compssings.There will
always be more computingapability inground systemghan flight systems,and human
interaction, when required, is moseadily done with ground systems where
communication constraints are minimal. On the ottard, there will always be morelata
available in the flighsystem.The data will be immediateot delayedor hours ordays,
and reactions can be effected much nprekly. Datacanalso be processed on board to
more effectivelyusethe availabldink. Therefore, asmore computing capacity becomes
available in flightsystems andhe quality andeliability of flight autonomy improves, the
balance shifts increasingly in favor of flighystems. Irthe extremeall automation is on
board and ground tferaction is reduced tproviding the subjective contribution that is
irrevocably in the human domain.

This ultimate aim isfar into thefuture, so inthe meantime it imecessary to find a good
partnership between flight argtoundthat fits the present state of developmemhere
substantial capability remains on tiggound. Accordingly, it is likely that many of
necessary flighelements eventually required wiitst takeform in groundsystems.This
doesn’'t mean irall caseghat proven groundtapability can move intact to fligistystems.
Their unrivaled opportunity for immediate response will always give flight implementations
a fundamentally different character from thgiound counterparts. In fact, angpability,

for which movement to flight exacts no significant alteration, could as vehain
earthbound. Migration, therefore, is not simply about the movement of software.

What thendoesmigration of capabilityfrom ground toflight mean? There are different
answers, depending on the issue addressed by migration.

Assimilation

In the simplesexamplesthe desire is merely to break the tyranny of lthk, which is
expensive antime consuming. In cases whedata issent tothe ground forautomated
processing, and results possibly returnethéoflight system,but on a relatively leisurely
schedule, the value of migration to flight is purely to save diméts. Inthis case, ground
capability can migrate essentiallynaltered,except as the need to fit more tightly

15

X2000 Software Architecture Definition 5/12/97

constrained computing resourcelictates changes. Anadvantage may accrue from
eliminating round trip lightime in thereply, but the nature of theesults is not mateily
altered in migration othis fashion,and it may well behat thesavedtime is used for
nothing more than reducing the overhead of the task itself.

This sort of increase in autonomy, while not trivial, is not burdensome to impleonest,

the infrastructurdor migration is inplace. The enabling feature is an architectdinat
overtly recognizes the kinship of remote processes with fmogksses, in a sens&king
migration litte more than the alteration of link characteristics between communicating
software component3he accomplishment ahis migration is not therefore so much a
success fothe capability moved to flight implementation as itfas the capacity of the
flight system to assimilate it. Migration, first and foremost, is an architectural strength.

Augmentation

More complicated examples of migration deat so much with transportingapability as

they do with transforming capabilitffhe function leaving thground isreconstituted in a
fundamentally different and more vigorous form on board purely because of the richness of
data available that ngroundrendition could commanduch functionsare typically more
intrusive and all-encompassing because they influence, ndigusthingsget done, but
whatthings are possible.

For anarchitecture to accommodatieis sort of autonomythe extant elementsiust do

more than simply acknowledge their new partners. They may further be called upon to play
new rolesnever requiredvhen geater control rested witthe ground. Forexample,
augmentations could be necessary in predictive or diagnostic abAtlapting tosuch
immigrant capabilitytherefore, means also supplementing capability already iplace.

The easawith which thiscan bedone without undermininghe inheriteddesign is the
second essential strength an architecture must possess to support migration.

Neither of these approaches to migration can happen by accidenfirsthkas direct
implications on the way architecturedmponentsnteractand the independence ioternal
function fromthe external characteristics of interaction. Beeond suggests approach
to modularity wherein each component mayfuogher partitioned into separalieodules,
residing in different locations.

3.5.2 Reusable Components

Having thedesign in hand for onmission, it islikely that the nexinvolves most of the
samefunctions,often with comparable hardwafer much of thesystem.The next after
that will similarly resembléats predecessor, and sm. Onecould conceivably find the
subset ofeachdesignthat continues into the next and rebuild thew design upon this
foundation. After a few missions a thread that all sinaag befound winding through the
collection, and therevould be anatural inclination to broadethis thread tothe extent
possible so that each mission could minimize its developouests. This approachhas, in
fact, been in generdhvor for decades, describimguch of the present infrastructure for
flight projects.

The unfortunate side effects of this approach that it eithefinds onlythe least common

subsetamong all programs, or itseverely constraingheir implementatiorand retards
progress.This can be partially mitigated building software in ananner that is more

16

X2000 Software Architecture Definition 5/12/97

readily tailoredfor eachapplication, such aso-called “data drivenimplementations, or
those that reuse a commkearnel. Neverthelesshe collectivestrand remains eestrictive
concept, addressing only broadtytting functionality, joining a diverse spectrum of
disciplines under one colorless cloud.

Self-contained Modules

Far lessentangling is an approackhat addressesthe interoperability of diverse
components. The essence of this approach is to encapsulate all aspects of a phjgctlar
within self-contained modules sharing commomrrattionstandardsrather than drawing
relatedfunctions from severagroupsinto some monolithicorogram. In this way the
identity of an object is nasubsumed inside sonself-perpetuating amorphous structure
that has no allegiance to any particular system or component.

Such modules can move more freely and intact from one program to anotten, ke set

aside when not needed without threatening the integrity of other modules. There is no need
to span most programs — only enoughnake potentiateuse attractive. Therefore, the
overall portion of functionality captured in reusable form is potentially nmigher. At the

same time, each module survives only as long as it continues to setafeparpose, and

this capability can be abandoned in relatively smedrementsThe agility ofthis process
assures that continual progress is not hampered.

In additional tomodularity,the concept of a reusable component implieg part of the
component remains fixed as the componemneised. However, iteed not beall of the
component. The nature of the reuse depends on what parts afexdw:ld hiscan include
each of the following cases:

Interface reuse

Interface reuse occurmghenthe interfacewith which the component interacts with
other components remains fixed while the internals of the componentanay
Interface reuse is aamonplace insoftware libraries and protocol(&.g., math
library functionsimplemented inhardware or softwaréloating point arithmetic).
While the implementation mayary, there is nevertheless anplied constancy in
the function actually provided. That is, one’s expectation oféikalts of using the
component may be considered part of the interface which remains unchanged.

Algorithm reuse

Algorithm reuse occurs whethe functionality of the component igused in a
variety of contexts, where each context requires a specific interface. With a complex
data processing algorithm, for instance, there may be substantial bemefiséoin

a new system, even if substantial interfaces changes are required.

Component reuse

With componentreuse boththe interfaces and algorithms of the component are
reused without modificatiorLegacy software fallsinto this category where the
software does not adapt to its environment but the environment adauisktovith

the legacysoftware.Onegainsthe greatest benefftom this type of reuse if the
architecture definestandards qaable of minimizing the level of adaptation
required.

17

X2000 Software Architecture Definition 5/12/97

Note that the scope of component reuse can occur both within one safesage, across
multiple software designs, or both.

Adaptable Modules

There is still plenty of room toreate adaptableodulesthat arenot bound to garticular

system element. A variety of methods carapplied, including thosased inmore cross-

cutting approaches, but also model-based implementations as described above. This has the
effect noted earlier of broadening the applicability of a module, but in a much more focused
manner that permits deep@presentations, thus improvitige chances that a module can

be applied to a given application.

3.5.3 Promoting Design for Reusability

Reusable software components require aaohitecture to promoteeuse based on
modularity and interfaces, bwqually essential is a developmgnmiocessthat makes
software design for reuse a natural thinglto Softwaredevelopment involves series of

steps from software requirements, through specification, desigfementation, antest.
Various development strategies (e.g., waterfall, incremental, or spiral models) differ on the
basis of granularity, scopend revisions. These distinctions are orthogonal to the
techniquesfor designing, implementing, and testing thsoftware. Therefore, the
architecture alone does not provide all the ingredients necessary to realize reusability.

Custom softwar@evelopmentanks low inthatregard since reusability is not a primary
concern of thesoftware designerObject-oriented development methodologies provide a
plenitude ofsolutions,but also introducehe risk of compromising reusability due to
methodologies and tools that others may not be able to reuse.

Model based software development offers an intermediate paradigm whereamewseur

not only at the level of the software product (i.e., algorithms, structure, and interfaces), but
at the level of thesoftwaredevelopmeniprocess as well. Its contribution is tapture
purpose andunctionality into a model and tase thismodel for producing (inpart or
whole) the design, implementation, and testing of thgoftware. Models explicitly
representing the purpose of software components in terrtige g&sponsibilitiebestowed

on them, andhey describehow componentsare designed toachieve their intended
purpose. Model based software tools then translate this purpose and design into operational
products such as source code, documentatommand lists, telemetrgatalogs, and
interface headers. This hasmportant consequences dhe processes of software
development and reuse.

In this manner, software reuse can occur in form independent combinations of:

» Using existing models or writing new ones
* Using existing model-based tools or writing new ones
» Targeting models and tools for the same software architecture or a new one

[See “Model Based Software Design” in Appendix B — Examples.]

18

X2000 Software Architecture Definition 5/12/97

Standard Interfaces, Structure, Etc.

A completely formless approach to modularity is inappropriate. Sesuesare enduring,
regardless othe vehicle, mission, or epocliasic notions of timeresources, reliability,
priorities, and so on pervade most functions ahduld be addressedirectly in the
UFGA. Interoperabilityacross avariety of interface characteristics, functiomaigration,
incremental capability for assembly and variable fidelity execution, and so odicile a
set of universal standards mhplementation thamust be established. This section has
suggestednany such attributes that can guide thachitecture. Theaaim of the UFGA
should be to puinto effect these principles in thorough,well-structured mannethat
solves recurring universal problemshile maintaining the flexibility of functionality
necessary to gain wide acceptance.

4 An Approach to Layered Design

To meet the guideline of a layered architectuheere increasingapability is incrementally
available, and operational at successitages, it is necessary @stablish an approach to
system hierarchyhat identifies capability at eadavel. One such approach is described
here.

In this discussion two types tdyering areintended. At a coardevel thereexists across
the whole architecture the notion of named laystehthat each layehas awell-defined
interface,each interfacesupports awell-defined protocol, andeachsoftwarecomponent
exists within a particular layer. This supportsthe goals stated above regarding
incrementally available capability and layegeration.Without well defined layers these
goalsare more easilglighted. Remote interfaces wilhlso imposeclear delineations of
function that are best matched to comparable divisions within the architecture hierarchy.

Within each of thestayersfunctionality may be further “layered” in thgensethat some
components contrabthers,but at thislevel of granularity, there is no need to further
subdivide into striclayers. In this contextjayering” refers simply tothe hierarchical
organization of components.

4.1 Flight

This layered approach will be described beginning withntlest basic flighsystemsthen
showing how each layer builds upon those before without corrufitengrecedindgayers.

At the most autonomous extreme, most functions residbdrflight system (or systems)

with little but operator interfacdsft on theground. Topresent themost unified picture,
layering will be discussed first in this context. However, it should be noted that the intent is
to make the dividing line between flight and ground possible atstage,retaining one or

more upper layers in ground systems in very similar form to that which they would assume
on a flightsystem.The additionadiscussion required to addrasg ground portion will
therefore be minimal. Test systems, which in this architecture are essentially a combination
of the eventual ground system plus a simulated flight environment, will be discussed last.

19

X2000 Software Architecture Definition 5/12/97

4.1.1 Basic Systems

Below a certain levelespeciallywhere computing resourcese highlyconstrained, the
overhead of a sophisticated architecture can become unreasonable if it toofdegkbd
on the larger effort. However, the UFGA must not abandon smaller applications.

Instead,the nature osoftware components Hie lowest levels of thelFGA architecture
must be such that each addresses the comprehésaleeeds of its associated hardware
element.

That is, each low level component of tHEGA architecturemustmanage albspects of a
particular collection othardwarethat collectivelyperforms a highlyintegratedfunction.
This will typically involve local maintenancand control of thehardware,often in a
reflexive manner, incompliance to simple commandgdals and constraints. Will also
involve reporting the results of these commands, incluttiegtatus ofthe system and its
ability to supportthe commandsAnd where goals cannot bret, there will be sufficient
local actions taken tonask problems or at least preserve a safgfiguration. Asmall
number of operating modes will generally desctiiwhole componentall elements of
the system working collectively to a single end.

The internal structure of these elementapynponents of the architecture is not overtly
dictated by the architecture, except to the extest it meetsnfrastructure constraints and
subscribes tdhe external interfaces imposed by the architectlinerefore,there is no
point in discussing further hierarchical structure within the component.

External Interface

Low Level

Software Component
(structure hidden)

L Hardware

For compactsystems such as micro-rovers, surface penetrators,trentike, where
extremely efficient implementations adlemanded, thisan be sufficient to meetl local
needs. That is, for such systertig “flight” portion of theUFGA may consist of only a
single low level component. By addressing low level software components in this manner,
a full UFGA implementation is stilpossibleevenfor simple systems,since this lowest

level component is a completelution, and only this lowe$tvel component neeside

with the fielded system. This extends UFGA support to such systems, while allowing them

20

X2000 Software Architecture Definition 5/12/97

nevertheless to operate within the context of a larger implementatiobuithef which
resides elsewhere, such as on the ground or in a remote support vehicle.

The architecture here seems to be that at this level everything but the interface is outside the
architecture. Explain.

In more complexsystemsseveralsuch elementarycomponents may reside in the same
system, each dealing with a different subsdhethardware. Thisituation is described in
the next section.

4.1.2 Cooperative Interaction of Functions

A larger system will be comprised of several low Idugictions workingcooperatively on
a larger task. These may be instruments, sensiagtoationassemblies, power supplies,
or other components of this sort.

In this context, low level components can be associated with avbajenerally referred to
as hardware managers, but itingportant not to impose this interpretation tstictly.
There will be situationswhere inheriteddesigns bring withthem pre-existing local
software, whichthe rest of the UFGA mustaccommodate. By not imposingternal
structure on lowievel componentsthe architecture is better suited deal with such
inevitabilities — even if ithas to put a wrapper around such componentgelothem
adhere to interfacstandardsAfter all, this is effectively the same functioprovided by
hardware managers for their associated hardware.

Making eachlow level component of a largesystemrelatively self-sufficient, in the
manner of the small independesystems describe@bove, changeshe collective
architecture of théow level components only in regard to their physical a&fibn and
interaction, and the expediency of intercommunicatibis affords. Fortunately these
changes are complementary.

This acquired need taddressnterrelationships andollective conductntroduces the next
layer of the architecture — those components which build larger functions from lower level
components byacilitating and managing their interaction in a productivay, adding
additional processing if necessary, and then presenting this cooperative bttrauvigh a
single interface to highdevels. Coordinatingsensorsand actuators (via thelow level
managers) into a control system is an example of components at this level.

There is no attempt dhis stage to consideslaborategoals coordinated over lortgne
frames. Instead, this firshtermediate layer is characterized by aggregate capahiity
mimics in manywaysthe nature of its singleonstituentsThatis, the collective behavior
too will include maintenance and contfahctions, meeting relatively immediatgoals and
constraints, reporting status and activitgacting to problems and smn, in a fairly
reflexive manner.The main difference is that the internal interactions contributing to
behavior at this level are happening within the context of the unified architesttuictiure.
Thatis, the method of interaction among componentthis layer will bedictated by the
architecture.

21

X2000 Software Architecture Definition 5/12/97

External
Interface

Intermediate
Layer
Software
Components

Low level
Components

Beginning at this levelthe interdependence of components mayy by function and
circumstance such that the system becomes multi-modal, sometipase ofsupporting
parallel activities or of configuring components in assorted combinations to difterdst
More elaborate goand constraint commanding methods becomeessary and must be
explicitly recognized within the architecture definition.

Each component of this layer wilypically be dedicated to a particular set refated
functional modesMany will directly access lowevel objects, though nadll need do so,
working instead through intermediaries in the sdayer. Therefore, some components in

this layer will be subordinate twthers.Generally betweetwo linked components, if one
component is ever subordinate to the other the reverse will never bEhusewhile there

is no further layering among these components, there is a partially ordered hierarchy among
them.

Some pairs will be linked ageers,generallywhen bothare subordinate to a common
controlling component thaguperviseghe link. Not all pairs are linked, nor must the
topology be static. These relationshgre established by theeeds ofeach function as
provided by or to other members.

It is possible, and probably common, that some compomegihtse subordinate tawo or
more others. Thughetopology ofthe hierarchy need not betrae. Nor shouldhere be
restrictions on the span of any such link.

Components may then be in competition, depending on the mix of present goals. Since this
occurs at visible points withithe architecturalframework, mechanisms willbecome
necessary within the architecture to managedtbputed resources and resolve stalemates.
However, in a relatively steady state environment these allocations may still be handled in a
reflexive manner withbounded expectations ahe resultingbehavior. This gives the
source of commands a basis for planning activities over long time spans.

22

X2000 Software Architecture Definition 5/12/97

There is a question regarditige extent tavhich desires expressearlierfor incremental
assembly and variable fidelity execution should be satisfied within this hierarchy.

Incremental assembly (from the bottom up) is answered by noting that any component high
enough in the hierarchy to have saperiorcan be eliminateavithout impact aslong as
subordinate components have a defined, safe behavior in its absence. Thispertamt
property all components mugbossessnot only for thispurpose,but also forgeneral
robustness ithe face of problemd-urthermore, thisequirement propagatesutward to

the system hardware, whiclikewise must establish a safe statetie absence of
supervision.

Variable fidelity execution can be addressed in various ways, including simply substituting
simpler versions of all lowdevel componentsThere aresituations, however, whetais
is not desirable — where one ally wishes to addressnly higher level behavior. Goal
directed commandingrovidespart of theanswer,since its wholegurpose is tdide the
details of lower level operation, making goals happen dedsterbances. Providetiere
are no insurmountable resource conflicts, orey assume goalare metand therefore not
bother to include thdower level componentsthat perform the detailed operations.
Realisticallythough, it isn’t possible tagnoreall potentialconflicts. The bestthat can be
done is to boundhe behavior oimissing components to sonextent and retain deast
enough of thdower level behavior to addresthe remainingissues.Each component
should thereforepossess boundeehavior under most circumstances, andabke to
inform higher components of these bounds as part of establishing every goal.

4.1.3 Coordination in Time

While thegoals instructing anoderately complesystemcan be elaboratespanning long
time intervals andparallel functions, the goal elements directed to components of the
intermediate layer will necessarily remain at a moderate thwelto theidack of any overt
control overthe system as a whole and inability to see far-reaching glotmagequences.
The elaboration okystem level goals andtheir coordination to achieve eommon,
overarching set of objectives requires some form of broad executive control.

One approach to this need is simply to continue buildimgpreviouslayer in an ever
deeper hierarchy until some component emerges abgheserving ashe interfacefor the
entire system to the outsideorld. In keeping withthe descriptiorfor components ofhat
layer, the type of control thatesults remains essentially reflexive, with highkel goals
elaboratedhrough downward directiormdvanced appropriately through feedback from
below, and all activities coordinated to eliminate interference as the need arises.

At some stage ithe hierarchythough, thisbecomes limiting ifgoals atthe highest level
remain singular in time. Potentiir paralklism in thelower levels is not fully exploited,
and any notion of an agenda or preparatmynfuture goalsremains outside theystem.
That may be appropriate in some cases, and if so the portibe afchitecture allocated to
flight implementation may end with only the first two layers.

Otherwise, it becomes necessary to put stevel of controlover the timeline into the

flight system. At the level where protracted management of time becomes a dominant aspect
of a component’s functionality, new issussgin to arise that are difficult to handieth

purely reflexivemethods. This is alsthe level atwhich the particulars ofrarious system
functions become sufficiently distant to enable a more generic control architecture.

23

X2000 Software Architecture Definition 5/12/97

Recognizing and providing solutions for these issues is the objective of the next layer in the
architecture.

Time-based Sequencing

Time-based sequencing engines have been the traditional approach towlgaltimge in
pastsystems.Timed sequences providibe flight system with a superficiagrasp of the
future. If all goesaccording to plan then whahould be done when fally represented.
Embellishments of this basic scheroan be elaborateyith hierarchically constructed
sequences of sequencgzarallel” sequences, “parameterizesBquenceonstituents(i.e.,
macros), and soon. However,the axiom of predictability that enables time-based
sequencing to work sets definite bounds on the range of systems that can use it.

The great success of this approach so far has been largely due to flying missions where the
spacecraft eithestays far away from aelestialbody, orplants itself at onepot on its
surface. Some types ahcertainty can be dealtith via goal orienteccommanding, but
without any feedback into the sequence itself, every such action must be boundedty
case times and atecal atbest. Any remaining uncertainty that can’t be dealith in
advance is generally handled by hunkering into a safe state tiwbiggound regathers
some understanding dhe environment that allows it to get back into the prediction
business. This has worked because we have done our best teiesugiastances where it
doesn’twork, and becaus#or thefirst few decades of space exploration there have been
plenty of new targets fitting thigestriction. Thisconvenience can't lagbrever, though,
and we are already beginning to see the end of it.

The limitations of time-based sequencing have beamo&t painfullyobvious inthe past
upon encountering uncertainty without the possibility ground intervention. This is
apparent, for example, when sorgagtical undertakinglike orbit insertion must be
fashioned out a time-based sequenaggtem.Conditional waits and retries have often
been the extent to which the core method could be augmented. Mbstawftuakffort to
make this reliable has been accomplished outside the timed sequencing model.

These limitations are not cause to abanttos approachThey merelysuggestthat its
scope of application is far from universal. Consequettigreshould be room within the
UFGA for it when appropriate, but other approaches must also be available.

Event-based Sequencing

The next set of enhancements to time-based sequencing generally considered allow the
initiation of timed sequences to be governed by trigyents, or branchesithin them to

be governed by system state. Tha add a greateal of power andflexibility to the
sequencing process, and providde\el of capability adequate to capture mamgsions

where simpldimed sequences would faiUncertain arrival times and distances on fly by
missions can be accommodated within this model, for inst&@weelar capabilityhas also

been used to implement system level fault protection.

With enoughwork abasic system of thisort could beused to dovirtually anything
imaginable. It providesll the capabilities of @rocedural programming languadiited
only by the access it has to system state, and the expressivetigsgahditions it isable
to represent. In facprocedural languages specifically suitied suchapplications have
been developed. These provide a substantial improvementheverethods commonly in
use today. Of course, it is still always possible, if appropriate, to r@wagletely to pure

24

X2000 Software Architecture Definition 5/12/97

time-based sequencing with such languages without having to resurrect an old sequencing
engine.

The UFGA should also support such languagegen better approaches are available,
however.

Advanced “Sequencing” Languages

Despite thepower of procedural sequencin@nguages, itan still takes a great deal of
work to implement the sorts of goals and constraints one wishes to effect. This is especially
true when attempting to organize multiple, competing, conditional threads of a&ivitly.
situations are already common and will becomeribiem for ambitious futuremissions.
Evenwhen onebelieves a set of procedures isplace to handle theequired goals and
constraints, it isxeverclearfrom inspectionthat they truly capturene’s intent.Testing

must be exhaustive in order to build confidence, and thdtdeiensuingbenefit from the
development and test of one procedure that can be applied to the next.

Fortunately, whilesuch procedureare difficult to createand verify, expression of the
governing goals and constraints themselves is generally much straightforward.
Therefore,there is a great deal to be gainEdm a declarative style of “sequence”
programming, which cateave the timely elaboration gbals and constraints into actions
to an automated process.

This results in a number of important advantages:

* Implementation of one’s intent is directly verifiable.

» Priorities andalternative actions are easigxpressed and incorporat@ito the
process.This includes notions of whichre expendableersus whichare worth
retrying.

* Much more complicateaghetworks of temporally constrained conditiocan be
imposed upon a system than is practical otherwise.

* The system itself can tell you when it cannot meet its requirements.

* The engine behind the automation, where the investmémaigiestcan bereused
in almost anycontext. Once verified, this certification carriesover from one
program to the next.

* Goals and constraintsan bemerged, dropped, or ated incrementallywithout
having to reworkissues ofinteraction. Giving up due to problems, or having to
start over, is not necessary — a feature that can be crucial in critical situations.

» Changes due tdaults, shifting environmentsand other factors can be
accommodated automatically and on-the-fly.

* The goals and constraints can themselves be the object ofpatiggams, such as
planners, making integration of such technologies easier.

It should benoted thathis approach does nptevent the direct specification of timed or
event driven activities — at argvel. In fact, this highlights onmore advantage of the
declarative approach:

* A mixture of externally directechissionactivities(e.g., scienceobservations) and
autonomously generateattivities (e.g., orbit corrections) can be more easily
intermingled, especially on short notice.

25

X2000 Software Architecture Definition 5/12/97

The Executive Layer

Which of these approachesused hadittle effect on theresulting structure of any flight
systemthat includes the executivéayer. Thislayer consists of singlecomponent (or
collection ofcomponents workingogetherfor a singleaim) with interfaces taall visible
components of the previous layer. The difference from one approdicd text lies in the
degree of feedback exploited. Time-based sequensengrtually no feedback, whereas
more advanced approaches can potentially monigystem down to a very lovevel of
fidelity.

External Interface

Executive
(internal structure not shown)

Intermediate and
Low Level Components

Hardware

There is arobvioustrade to be made between the leveldadtributed reflexive behavior
permitted in thelower layersversusthe degree of central contralsserted from the
executive layer. It must be stressed, howethett, these araot competingssues. Rather,
they are complementary issues that must be balanced in light of the circumkineeest
mission. There is not one ideaix for all situations.The UFGA must bothaccommodate
this mix and allow for its tailoring to each application.

It should also be noted that the presence of “sequencing” capability in the executive layer by
no means prevents reducims of it from being present in components in tlosver

layers. There are many needs and opportunities for sequendimes@tomponentseven

though they may be very limited in scope. Therefore, anothierdeaf theUFGA should

be to makesuchfacilities (in probably simpler form) broadhavailable inlower layers,
without having to replicate them everywhere they are needed.

Finally, it has been noted that each of the approaches presented supports a representation of
the preceding simpler approaches. That means that any input understood with one approach
should be understood, in concept, by each of the more capable approaches. Moreover, it is
clear that some of the components in lower layers will likewise be communicating in similar
terms that are conceptualiyst smaller renditions athe more capablexecutive. In the

UFGA this idea should bemoved beyond concept into reality Biynding a universal

protocol forthe expression of such communication, whether single commatg|e
sequences, or complex networks of activities.

26

X2000 Software Architecture Definition 5/12/97

Internal Structure

As noted, the executive layer need oonhsist of a single component.niay be internally
complex with functionality divided among components of different specialtieanitbe
anticipated,however, that thesecomponents workamong themselves in a much more
conflict free manner than &iwer levels. This is due tihe nature of the executive as the
ultimate resolver of conflict. If ihas itsown internal conflicts, there is no furtheappeal,
so they must be dealt with internallihat isn’'t tosaythat allconflicts arising from lower
levels must beddressed¢ompletely by theexecutive. It may irturn wish toappealsuch
conflicts to higher levels stille.g., ground operators) faultimateresolution.The point is
merely that such unresolvable conflicts should not arise from within the executive itself.

This is not atrivial qualification. The difficulty of achievinguchclarity can beseen, for

example, when redundancy existshe portion of asystem which housebe executive.
How does the executive decide when to move from one home to the next? &acwtive

in so much trouble that it needs to move be trustadake thedecision in thdirst place,

and then carry it out successfully? Havimgpved, how does inake sure no dfective

clone is left behindBhouldthere instead béwvo executives thatry to agree with one
anotherHow is adefective executive discoveretfdw is it terminated2Vhose decision
shouldthat be”How is it possible t@uarantee a correct choicBRouldthere instead be
three executives with a majority vote? How complicated does this have to get?

Such questions get no simplghen redundancy is abseiitiey merely shift tassues of
when the executive decides to step aside, letting lower level behavior take charge of system
safety.

Issues of this sormnake the executive layer more thaist a highlevel extension of the
intermediate hierarchydescribed above. The issues confronting itare unique, and
investment in them can darge. Therefore, aexecutive is one componefdr set of
components) more profitablr reusethan mostothers, and consequently should be
developed with great flexibility in mind.

4.1.4 Deliberation

The tasks performed by the executive are dictated by a “sequence”, or more generally, by a
set of goalsalong with a description dhe temporal and conditional relationships among
them, their dependencies on externstiaite, and nformation about relativepriorities,
alternatives, and constrainfBhe term “sequence” is takdmelow in the more general
sense, despite the serial connotation of the term.

The creation of a sequence can be quite complicatemtdbr to devisegational behavior
that will achieve theyoals without violating angonstraints, one mug&now aboutall the
near termand longerterm interactions among the goalsub-activities, resource
contentions, and so on. This type of global reasoning about how the spaceceadhee
its goals is the objective of the deliberative layer of the architecture.

Planning and scheduling systems are a prime example of deliberative systemsakéhase
set of high level goals as input and produce a sequence oflexgerctivities that achieve
the goals while satisfying operationaksourceand otherconstraints. This is difficult
problem, and a powerful reasonieggine is needed to autom#tées process Depending
on the efficiency of the deliberatigystem andhe complexity of theeasoning problem

27

X2000 Software Architecture Definition 5/12/97

itself, it can take significant computational resources (minutes to hours) to produce a useful
sequence.

At the other end of the spectrum rsactive or reflexive resning, whichmakes fast
decisions based on local information. This kind of reasoning requires tewsgautational
resourcesthan deliberation, but cannot reason aballitthe global implications of its
actions.

Many intelligent agent architectures hawaeth deliberative andeactivecomponents. The
deliberative portion isiecessary to plathe longerterm behavior of theagent, and the
reactive portion is necessaryrgact quickly to unexpected or unpredictable environmental
events.Without deliberation, theeactivesystemcan make locally optimadlecisionsthat
makelonger term goals unachievabld/Vithout reactivity, the deliberativeystemcannot
react quickly enough to external events.

The UFGA must therefore support bothreactive and deliberativecomponents. The
executive layer and its subordinates provide rémctive functions inthe UFGA. The
deliberativesystem sets up a lortgrm plan of activitiesvhich the reactivecomponents

carry out. Byrestricting reactivalecisions to meagxplicit assumptionsnd constraints in

the plan, the reactive system can deal with unexpected events but still guarantee the validity
of the plan. This prevents the reactive components from "painting themselves into a corner”
while still allowing fast reactions to external events. Such boundedness must be a feature of
the UFGA executive and lower layers.

Traditional flight operations can be consideretlyarrid architecture, wherthe mission
planning personnetre the deliberativesystem andhe flight software isthe reactive
system. Simple engines, such as sequencers thaadmexpansion, do not perform any
deliberation directly, but rather invokihe considerable deliberative effort of human
planners to coordinatall the complex interactions (much like blockxpansion is
coordinated now in traditional sequencing). This requires much less computation, but much
more human involvement. Therefore, the human component of operations cost is not fully
addressed by this approach. Moreovee, timeliness of data accessiide suchplanning

and scheduling can be qupeor. This is adequate to meet masijuations, but due to its
limitations, automation of the deliberative process is a key objective of the UFGA.

Initially, automated deliberativprocesses othe groundcanwork with a reative system
on board.The UFGA should support acaleable level ofautonomy, fromdetailed
commanding at this level, to fuller autonomy where the automated deliberativeaatice
systems in the flight system are given considerable decision making authority.

Defining the structure of the architecture at this level can be perplexing. It may s&sin at
that the executive layer sibordinate tahe deliberativdayer. This seemespecially true
when sequencesomefrom the ground andhe executive is the entity beimgmmanded.
On the otherhand, sequencemust occasionally be abandoned time presence of
unforeseen circumstances. In a fully autonomeystem,the responsecould be to re-
invoke planning and scheduling with new inputs the nature of thenew situation.
Alternatively, the situation might be appealedgtound interventionEither response is a
reflexive action clearly initiated by the executive.

This dilemma isresolved by notingthat both execution and planning/scheduling are

subordinate to a higher authority. fime casewhere groundinvolvement isrequested,
humans willlikely fill this role. In afully autonomous system this role filed by an

28

X2000 Software Architecture Definition 5/12/97

automated agent of tliggoundthat is “aware” ofmission objectives angriorities. Either
way, both the reactive and deliberative components are digpesal of this entity, which
may be referred to as the operations manager.

Before considering the resulting structure, however, note that the deliberative system is not
just a single component, noeed it be viewed as residing purely irdeliberativelayer.
Deliberation, after all, is not the solitary occupation it may seem. First ddrgle amounts

of data about the state of the system may be required toiriteligent plans. To be up to

date, this informa@n mustcomefrom components lower ithe architectureSecond, the
analytic abilitiesnecessary to assess various system functizams lie (and shouldlie)

within the lowerlevel components of theystem which perform them. Ftresereasons,

any deliberative componergquires links into lowelevel components to gathefata and
request services in support of the deliberative process.

Access points into the system shouldaogacent tahose exercised bine executive. That

is, inquiries for deliberative support should go through the same hierarchy. Otherwise, it is
possible forthe eventual executors of a plan find the plan inconsistentwith their
capabilities. This wouldiolate basic modularitprinciples.The resulting structuréooks

like this.

Operations Manager

Deliberator

(e.g., Planner/Scheduler;
internal structure

not shown)

T >

l;

(Deliberative Support

(mirrors executive
hierarchy)

Given this structure, it is apparent that referencalltthe new deliberative capability as an
additional layer ignappropriate Only the operations manager lies innew higher layer.
The toplevel of the deliberativebranch is a peer to the executieanch, and the
components supportindeliberation are at the same levelcasresponding components in
the execution hierarchy. Most of timew structure is amugmentation to the structure
already described.

29

X2000 Software Architecture Definition 5/12/97

Defining the structure in this way is important for one crucial reason. In particular, note that
the entire deliberative hierarchy may reside ongtaund. This describeghe traditional
ground sequencing process, as well as any advanced sequencing process whbeeiit has
decided, nevertheless, tetain deliberative action primarily on tlggound. Onthe other
hand, this structure alscsupports afully autonomous system wherdeliberation is
performed largely in the flight system. Thus this structure supfiwataotion of migration

to flight all theway from traditional sequencing to full autonomy without fundamentally
altering the architectural structure.

In this structure it ishe operations managtratinvokes planning activities. It is also the
operations managénat commands the executive, eitheith sequences produced by the
deliberative process, or directly, making it possible (if perhaps not advisable) to bypass the
deliberative process. If the executive determines that a sequence can no longer be executed
in its presentorm, it informsthe operations manager tfis problem in acompletely
analogous manner tine way subordinates inforrnthe executive, and so osiown the
hierarchy. It is the operations manager’s decision whether or not to invoke a replan — an
essentially reflexive behavior! Whetherdbes somay depend on theriticality of the
mission phase in juxtaposition to safety and long resource considerations. Therefore, the
operations manager may be thought ofsapger-executive, operating reflexively from a
very coarse grain sequence of missionlgjogriorities, and constraints. Present day
operations managers are teams hafmans. Fully autonomous systems hatiis
responsibility to an intelligent agent in the flight system.

Mission Plans

In this concept it igpossible for systems dhe autonomous end of the spectrtimat
mission plans move from broad allocations and guidelines made for human consumption to
formal specifications mad®r machineconsumption. As sucthese plans will assume a
shapesimilar to the more detaileslequences discussed earli€ne essential differences

will be that goals are longéerm and higher levelgdealing with majomission phases and
events, priorities wildealwith strategicssues such asafety goalversus broad mission
goals, and constraints witleal with issueslike long term resource consumption —
sufficiently so thatinvolved deliberativeprocessesan be included in their methods of
behavior.

This is alsothe level atwhich human involvement is irreplaceabl&@herefore, the

generation of mission plans will always Iltee domain ofhumans, nomatter how
automated the tools which support them.

30

X2000 Software Architecture Definition 5/12/97

Traditional

Flightl Ground & —— Ground Personnel
|
é— Ground Support Tools

I

Partial Automation

Fiight | Ground & — Ground Personnel
/
Ground Support Tools

UFGA

f—] - ——
4

31

X2000 Software Architecture Definition 5/12/97

Fully Autonomous

Flightl Ground & — Ground Personnel
1

Ground Support Tools

Planning Granularity

Granularity of reasoning in the deliberative process, whether fully automated or not, should
be dynamic, asdlictated by the uncertainties in behavidralinds in lowetevel functions

for various situations anthe needfor optimality or long term constraintsatisfaction.
Where possible, it is generally advantageous to plan at the coarsest level, lettingvelver
processes expand higavel goals intodetailed actions. This isespecially truewhen
uncertainty is greatest and a highly reflexive approach is necessaactdo the situation

as it unfolds. Critical events often have this character, but it also describe a typical day of in
situ exploration. Coarse grain planning alapplies, though, whenhe schedule is
relatively relaxed, allowing reflexive processaaple freedom oéction, even ithe result

isn't too efficient. Thislevel of automation might handle larggretches of aypical
mission.

On the other hand, when conditions are well known, but there is strotige to optimize

a sequence, planning to a finer level of granularity may be appropriate. Science observation
sequences may fall into this category. Detailed planningatsmybe necessary in a highly
constrained situation where purely reflexipmcessesre unlikely tofind an adequate
series of actions satisfying the constraints.

Most missions arékely to have a blend of thes#tuations. Thereforahe level atwhich
deliberation occurs should be adjustable asiission progresses, fexample as part of
the mission plan.

Replanning

A potential problem with deliberative processes is the time they can take to germgeate a

With enough lead timehis is not anissue.Working from the mission plan, itmay be
possible to start the next phase of planning hours or days in advance, since the end point of
the previous stage iwell defined. However, in aonanticipated situation thaequires a

prompt reaction, this is unsatisfactoReflexive actions may be able to dewth the
immediate situation, but if a full response requires rapid regeneration of the sedjuenece,

is a problem.

32

X2000 Software Architecture Definition 5/12/97

Traditional sequencindpas partially dealtwith this predicament by breaking so-called
“critical” sequences into short restartable chunks and then highly engineerirgsplomses

to problems for that particular set of activities inadi@mpt toput the interrupted sequence
segment back on track. In addition, contingency sequeareesften prepared tealwith
certainscenarioghat can be anticipateahd where staying othe original plan is not
possible.These ardimited methods of dealing witlthe problem, and so expensieat

their use is confined to onlthe most severe circumstances. Probldahm ariseduring

more mundane activities generally result in dropping large sequences that can last weeks.

Besidesemergencies there may be other motif@s wanting to alter a sequence in
progress. Newconstraints or new goals based afoimation thatwas not previously
available are examples. Unless windows are left in sequences specifiqadiymiio thelate

addition ofnew activities (an inefficient and not necessarily adeqapggoach)the only

way todealwith such changewnhile leaving the sequence unchanged isetaeflexive

processes sort it out. For the same reason that deliberative praressesded in thierst

place, this is an unsatisfactory approach.

The automatic ability to replaaddresses sontheseconcerns,but if replanning takes
hours, then hours of activity are lost. The extent to whichctisbeshortened determines

the extent to which replanning becomes an effective tool both in contingency situations and
in the normal adjustment of the mission plan. One approach to this problafelisesative
process that is able to iterate from a previous @dapting just enoughccommodate the

new input. Another is a deliberative process that generates successively better plans starting
from a crude but “correct” initial product. Thigay, it isable toprovide thebestavailable
whenneeded rather than having to whit the undiminishegrocess tglay out. Even

when there igime to deliberate to an ultimat®nclusionthe ability topause parvay to
incorporate new input can have significadivantages. However it is accomplishéese
flexibilities in the deliberative process should objectives of the UFGA.

Links between Reflexive to Deliberative Processes

In the structure described above a dualibs suggestedetween each component in the
execution branch and a counterpart in the deliberati@mach.These doublets cannot exist

in isolation from one another, even if the first resides in the flight systerthasdcond in

the ground systemThe deliberative componershares infanation with its executive
counterpart, and when flight conditions affecting it change, the deliberative component may
need to know about it.

From anarchitectural point ofiew, this impliesthat there is a peer to peer link between
such pairs of components, even if thik spansinterplanetaryspace.The UFGA should
explicitly provide for such needs.

Monitoring Services

Software components, arkle hardware theyerve,can be coupled imvays not overtly
reflected in the hierarchy established by the architecturéacin part of thereason for
reflexive behavior in the system is to justiffeael of ignoranceaboutsuch things. It may
still be wise to monitor suchinteractionsthough, to guardcagainst changethat violate
assumptions. Furthermore, it adten theconsequences of these overlooked interactions
that provide the clinching evidence against a particular device as the orighawf. & his
means that some sort of monitorisgrvice, looking folinteractions not strictly within the
avenues of normal component discourse may be necessary.

33

X2000 Software Architecture Definition 5/12/97

If for no otherreason basic telemetry wilalways be needed where unfettered access to
data may mean direetccess teeachand every component, regardlesstiud functional
hierarchy.

This does not imply that the structure as described so far has omitted something essential. It
does suggest, howevehe existence of componeritsat are insome sense omniscient,
needing access to many if not all other compondits UFGA should providehe means

to handle such functions efficiently.

4.1.5 Distributed Systems

Haveall layers of the architecture been identifiddigt necessarily, but at thigoint it is
possible to buildupon the capability of existindayers, expanding functionality through
nesting and parallelism.

For instancenote the similarity in structure between operatigressonnel providing
mission plans to amntelligent agentwith the help of ground tools to arautomated
operations manager providing sequences toexatutivewith the help of deliberative
processes. The hierarchy within the execution branch can be similarly nested if two or more
relatively independent systems comprise the executive’s domain.

Suppose, for example, that an orbiter is in chargefaimdly of smallrovers or aerobots.
Each of the insitu systemscould possess it ownnternal executivewith subordinate
components, but thisollection of executives might henderthe control of asupervising

executive in the orbitewhere mosteliberationoccurs. Similarly, independespacecraft
flying in formation might take direction from a common mission plannetheground or

in one of the vehicles.

Deliberation mightikewise be distributed among specialized deliberatdrech generate
fully formed plan constituents (under constraints) which are then incorporated into a larger,
more general plan.

Differentiation and segregation sfructures withirthe UFGA in this way should be the
method by whichthe architecture extends itsefiver a diverse array of distributed
configurations.

4.2 Ground

Much of theground portion ofthe UFGA in this layered approaclnas already been
revealed. Fromhe mission plan through deliberatiosequencing, and execution, the
ground plays a greater or lesser role depending on how mubk afchitecture is retained
on theground —capability moving a layer at a time. The architecturedascribed,
provides a broad spectrum of choices on this division.

Other issues regarding the flight ground split are less structural in nature. For example, the
amount of on boardata reduction thatccurscan be decided almost invisibly within the
context of thestructure. This is an orthogonal issimat involves trades ormandwidth,
storage, computationalpower, compressiorosses,and so on. The impact on the
architecturehasmore to do with makingure such trades do fact remainindependent.
Nothing about the architecture itself should impose a choice one way or the other.

34

X2000 Software Architecture Definition 5/12/97

Other issues to be discussed...

Data bases and archiving

4.3 Test

5 Software Structure

A software architecture may be described both in ternteeofeneral structure imnposes
upon a software design without regard to gayticular application, as well as the more
particular functional organization imposed by the applicatims section deals with
features that transcend applicatiseues.Functionalissuesarediscussed in a subsequent
section.

As a general architecture, to be applied ov@ragression of applicationshe UFGA
requires a software structutigat permits inheritancand migration of capability, with the
consequent desire for uniformimplementednodulesthat can becomposed in different
ways. In additionthe interactions imposed Ishared processingsommunication, and

other infrastructure, the hierarchy of a layered organizatenmutualhigh standards for
reliability, testability, and other attributeall motivate norms of implementationacross
components of the architecture. Even within a single applicatibiarraonious software
structure is important in generating a manageable partitioning of the effort that can be easily
integrated.

While these statements may apply to virtually aygtem andhere are many competing
approaches to their realization, there are nevertheless common obstacles faysey
for remote exploration that recommend a manarrowly focused selection of
characteristics. Moreover, an approach appropriate atewekin thesoftware structure
may be impossible at another level, especially in a system where sepamatats may be
anywhere from occupyingthe same computer to occupying differeplanets.
Characteristics deemed advantageous to meeting these needs are addressed below.

5.1 Object-oriented Modularity

An object oriented approach to software [See “Object-Oriented Software” in Appendix A —
Definitions] creates a modular partitioning ofdasign that improves independence of
development activities, and potentfak migration andre-use. It is alsavell suited for
weakly coupled multicomputer architectures (often prefefogdreliable, fault tolerant
designs),and for widely distributed systennsherent in remote exploratioMoreover, it

more cleanlydivides into replaceable or optional partitions support of incremental
delivery and layered execution levels.

35

X2000 Software Architecture Definition 5/12/97

5.1.1 Hybrid Approach

Due to the distributed nature of the UFGA architecture, even in its humblest incarnations, a
system will generallyconsist of severadctive objects.The flight andground components

of the software are clearly distinct in this way, but many other physical divisiapdorce

this. This doescertainly notmean that albbjects within the architectum@ust beactive
objects.

At lower levels within the architecture, there are compelleesons foseveral objects to
sharethe same thread afxecution. Synchronous I/O arabntrol functions operating
cyclically with precisetiming requirements mayind the overhead and samplinigter
intolerable, especially on low performance or highly loaded compM#hie theresulting
level of coupling is tighter, it is to a desirable etiat is difficult to achieve efficiently in
other ways.

At intermediateevels, interactions tend to be moesynchronous and infrequeMaking
objects active, even where ndictated byphysical partitioning, is areffective way of
decoupling objects.

These observations indicate that tHEGA must support a&ombination of active and
passive objects on the same processor. This would presumably by accomplished within the
multitasking capabilities of an operating system wherein some objects would shage a
thread of execution maintained by the operating system or by one parent within the group.

5.1.2 Object Interactions

To the extenpossible,objectsshould beable to interacwith one another in a uniform
manneracross a widevariety of circumstances. At one extreme, atgect can invoke

another through a simple subroutine call. Mauld bethe case, for instance, when low
level objects share a process, one calling the other.

At the otherextreme, arobject on a computer on tiggoundcan invoke an object on an
embeddedorocessor on &pacecraft through aomplex series of eventshat includes
multiple DSN passes.

It is desirable tanake theprogramming of inter-object interactions as uniformpassible

at both extremes while recognizitigat the runtimebehavior of these interactions will
necessarily be very different. To accomplish this it is necessary to have an abstract
description of inter-object interactions that captures the salient inherent differences imposed
by physics and the design of digital systems.

Attributes

We identify five dimensions along which to describe these interactions at an abstract level
as follows.

Latency — How long does itake between théme an object isnvoked to the
time when the invocation has its intended effect or returns its intended result?

Reliability — What is the probability that an object invocatisit fail to have its
intended effect or produce its intended result?

36

X2000 Software Architecture Definition 5/12/97

Side-effects — Is the object invocatiomesigned to compute a result or to
produce side-effects such as changhegyvalue of a state variable or taking some
physical action? Side-effecting objects can require synchronization which non-side-
effecting objects do not.

Parameter passing— Are parametergpassed byalue or by reference? If by
reference, howare object interactions handlextross multiple processors and
multiple memorysystemsandhow is memory management accomplished? If by
value, how are aggregate and linked data structures haiidieet?s clarification)

Blocking — Does objecinvocation cause thivoking object'sthread of control
to block? If not, by what control mechanism are results returned to the invoker?

Inter-process Interactions

Active objects (i.e. processes) interact with each other in more complexthan passive
objects. Passive objectsecause they do npbssesgheir own control thread,can only
have their methods called by other objects as subroutines. Active objects, by coaueast,
their own control thread andhus interact in more compleways. Forexample,active
objects can potentially exist on multipghysical processors, possibly usingpultiple
memory systems. The following issuesneed to beaddressed bythe inter-process
interaction mechanism.

Mutual exclusion — Some mechanism must be providedrmediateaccess to
shared physical and logical resources like shared memory, mass storage devices, or
spacecrafactuators. Simply assignirgachresource to itown "manager”object

does not solve the problem because the manager object may be invakedtifig

threads. It is possible to solve the problem by putting critical sections entirely inside
single methodbodies, which assurasnutual exclusion if the manager object is
single-threaded. Howevethis approach onlyorks if mutual exclusion extends

over short periods of time.

Preservation of argument semantics — When objects reside on
heterogeneous processors somechanism must be provided to transldtda
between the formatssed on thosdisparate machine3here ardwo ways to do

this: marshaling, and puttingemantic information in the messagentent. Both
approaches have tradeoffs in termsflexibility and computationalkcosts. Also,

many marshaling implementations imposed an additional burden on the programmer
because they cannot directly parse data structure format information from the source
language, and requirthe programmer tesupply redundant information in a
different format. This in turn requires either manual maintenance of these redundant
representations, or the use of additional development tools to manage the redundant
representations automatically.

Contingency management— In multiprocessosystems,the integrity of the
computational infrastructure cannot aesumed. (In facthe whole point ofmany
multiprocessor systems is to provide redundancy in the event of failures.) The inter-
process communications architectshould be robust ithe face ofboth transient

and permanent failures.

Control flow — How are multipleaccess to a single object to imediated? Are
access processed in a strictly FIFO manner, or is there some prioriteaeieme?

37

X2000 Software Architecture Definition 5/12/97

Can one object cause an asynchronous change in the control flow of antjiot?
If so, what are the restrictions and constraints? niét, how are time-outs
implemented?

Abstract interface — It is possible to design aabstract interface to an inter-
process nteraction mechanism thdtides various aspects dhe underlying
implementation, including: thénost processor for anyarticular object, the
architecture of the host processor, the communications latency between objects, etc.
Although information hiding is generally good programming practice, in the case of

a widely distributed system ihight be desirable to make certaispects of the
implementation manifest in the API. For example, it might be desirable for an object
invocation that relies on data communications between spacendhfyyround to

look different from onethat is apurely local computation inorder to make it
obvious that a high-cost operation is being performed.

Physical Interactions

In a fully object-oriented desigimere is no interaction among objects exdbpbugh the
methods presented to othelbjects. This exeme ishopelesslyidealistic for embedded
applicationssuch asspacecraft control whersoftware plays arinteractive rolewith
hardware.The state of @ardware manager object, for instanogy be viewed as the
aggregate of its internal variables and the state afhdh#gwarethat it managessince the
object consults the state of the hardware as part of many maetlamitions.The physical
portion of this state, however, also evolves through the invocation of physical interactions.
Through this pathhe state of one object may influence the state of another without the
invocation of software methods.

Physical interactions may be due to tight margins on shared resources or simply due to the
interconnectedness of physicalocesses.Some of the more important interaction
mechanisms are:

Kinematic state, particularly spacecraft attitude, but aleoluding trajectory and
articulations. Nearly evergctivity on a spacecraftnposes some constraints on
spacecraft attitude.

Subsystem stateghat cross subsystem boundaries. For example, sending a
command to an instrument may require a data bus to be in a particular state.

Renewable resources such as electrical power, data storage, and
communications bandwidth.

Non-renewable resources such agpropellant and operatiniifetime of some
hardware.

Electromagnetic, thermal, mechanical, and chemicalnteractions, such
as EMI, vibrationspropellantsloshing, and chemicalresidues from engines and
thrusters

Many interactions operatcrossmultiple mechanisms. For example, on a solar-powered

spacecraft, changinipe spacecraft'attitude can changeoth the availablgpower and the
thermal load.

38

X2000 Software Architecture Definition 5/12/97

The above interaction mechanisms are examples of what is known as physical causality, the
notion that there is an inherent ordering among phenomena due to the physical nature of the
processes thareresponsible for such phenomendhile there are severapproaches to
understanding and modeling causality alewel adequatefor designing andbuilding
software components, model-based reasotéefniques offer several of techniques for
modeling causality avarious levels, and foseparating the part of the causality that is
inherent to the physicalorld from that which is induced by interactions of software
components with each other and with the world.

Other Interactions

Software objects orthe sameprocessor alsanteract outside the strictures of method
invocation through the limiting effects of bounded computer performance. Agabie one
may view the present context as part of sharedstate of eaclobject. More importantly,
one object cannot become active without another becoming inathieesfore, whether or
not an object meets a deadline can depend on the operation of other objects

In addition, there are indirect interactionsrought about purely byogical inter-object
competition that can lead to deadlocks or other failures.

In eithercase, arobjectconfronting a failure must consider aiteration of state toleal
with the consequences, even though no method invocation has occurred.

Finally, to the extent that object orientatkesign is not followedpbjects may interact
through other means outside of method invocation.

5.2 Inter-object Communication Standards

Points to make:

Different approaches appropriate at different levels. Low levels logedverhead,
low latency, high bandwidthintermediate levels neebbustness an@ase of
integration. Remote communication links need to @etd long time delays and to
support processes to improve reliability, and link efficiency.

Despite differences, there should be uniform standards of sorheForexample,
migrating tasks, switching the link, and so on should be transparent at some level.

[The following makes several controversial points that need to be cleared up.
¢ Most present inter-object communication uses RPC or client/server model

¢ Only if discussion regardsterprocessor or intertaskommunicationBetween
objects in the samiask ordinary procedure invocation is still theorm. Many
objects sharing the santlkeread ofexecution willremain an importanpart of
future systems, as it ithe dominanform now, soprocedure callsnust be
included in this discussion.

¢ Blocking effectively reduces the number of threads running:

e Only onethread at atime runs on one processanyway, scthis is only an
issue forinterprocessorcommunication.We've always used asynchronous
messaging for that.

39

X2000 Software Architecture Definition 5/12/97

¢ Only the calling thread is blocked, bother threads on the sanpeocessor can
continue to run, so the processor need ever be idle, even with blocked threads.

e There is often aatural sequence of execution among objattshthat objects
are blockedanyway, simplybecause they're waitindor the next round of
processing.

e Synchronous communication introduces a class of deadlocks

e This istrue only if the blockedobject is notreentrant, supporting only one
thread at atime. This isgenerally a resolvablsituation, butthere are effective
ways toavoid it in thefirst place, for example byrestricting procedurecalls
upward into the hierarchy.

e Objects can be internally multithreaded.This is oftenthe only basis for
resuming execution after sending a message anywiay the messagexpects
a response.

e Asynchronous communication makes this class of deadlock impossible

e Thesamepotentialfor deadlockexists with asynchronouw®mmunication if a
reply is required to proceed and the objedotocks without it.That is, the
communicatiorsystem itself may be asynchronobs{ objectscan add their
own synchronization requirementnd reintroduceall the same behaviors as
synchronous communication.

e All concurrent threads of computation to continwhile data communication
proceeds.

e Onlytrue if theyhavesomething useful to do whileaiting for areply (often
not the case)and only useful ifconcurrent threadsre ondifferent processors
so more than one can run.

]

The UFGA will be alistributedsystem,encompassing multipleoncurrent active objects
or tasks running on (potentially) multipfgocessors. No such set albjectscanfunction
as a coordinategystem unless thepanexchange datalhe means chosen tenablethis
data exchange will profoundly affect the character of the UFGA.

Most ofthe inter-object communicatiomechanisms in widespreage inthe 1990s are
based on remotprocedure call§RPCs) orremote methodéhvocation,also known as the
“client/server"model. This moddéverages off doware developersfamiliarity with the

notion of procedure invocation. In concept, an RPC is sirtq@ycalling of afunctionthat

resides in a remote address space; as such it can havefgedésand/or return avalue like
any other function call. The intent is to enable theleveloper to developlistributed

applications as easily as monolithic ones.

But when a function igalled, theinvoking (or "client”) code issuspendeduntil the
function has completednd the result(if any) is returned toit. Deviating from this
operational structuravould devalue theRPC model byeducing the cognitivéeverage it
gives developers. Adhering to it, thougheansthat anRPC mustsimilarly suspend —
block — client code until the remote procedure has been complatetthe resulteturned.
That is, the client/server model limits the number of objbetscan actually beomputing
(i.e., not suspended) #he samdime, and theseverity of thidimit increases as the time
cost of data communication increases.

40

X2000 Software Architecture Definition 5/12/97

Moreover, this "synchronoustommunication introduces thpotential for a class of
software deadlockghat are subtly different fromthe resource allocationdeadlocks
discussed earlier, in that the computing objects themselves are the resources for which there
are conflicting demands. Supposgbject Aissues an RPC tobject B, and in order to
respond tahat RPC object Bmust issue durther RPC toobject C.Both Aand B are
suspended, waiting for C, so neither of them can respond to RPCs issattetbgbjects

until C responds. At least three threads of processing have been effeetiveigd toone,

that of object C, but that's ntite only danger.Suppose at sonm@oint the implementation

of C is changed such that it must obtain information from A in order to respond to any RPC
from B. There is nothing i€@'s source code to warn of tHeoming disaster, but asoon

as thischange is made and iBsuesits first RPC to B,all threeobjects —and all other

objects that communicate with any of them, and all others that communicate with those, etc.
— freeze solid.

Asynchronousnessage passing, in whidbjects merelysend messages to oaaother

and continue immediatelywithout waiting for replies, makes thiglass of deadlock
impossibleand enablesall concurrent threads of computation to continwdile data
communication proceedgSeethe discussion ofthe Law of Demeter elsewhere for
additional tioughts on this topic.fror these reasons, asynchronous message passing is
superior to the RPC model even if its utilization is less obvious to developers.

Basing inter-object communication on asynchronous message passing haslotmtages
that are particularly relevant to the X2000 program. By enabling client software to continue
operating while data are intransit, it simplifies the implementation of communication
between a@pacecrafisoftwareobject andone that resides in aMission SupportArea on
Earth: communication over the deep space link takes |laihg@ercommunicatiorwithin the
flight processor, but the versameapplicationprogramming interfacean beused in both
cases without affectintpe behavior of any individuabject. Thatis, within some limits,
the implementation of the objdblt sends a messagmn beentirely independent of the
location of the objedhat receivest. (Tight control loops can'toperateacross the space
link, of course. Howeverthe delivery of observations to @lanner and ofplans to an
executive might not be so severely affected by imposing or removingloaftrip light
time delays.) This irturn simplifiesthe migration offunctionality betweerhe spacecraft
and the ground, an important feature of the UFGA.

Finally, asynchronous message passgrgatly simplifies — perhaps enables — the
implementation ohighly fault-tolerant sétware architecturesbased onparallel software
object populations that "vote" at key points in the flow of processing. Byrdtusing the
needfor radiation-hardening offlight computers, this technology offettee potential for
significantly reduced spacecraft cost.

5.2.1 Layered Hierarchy

A wealth of interaction mechanisms make it more difficuldésignlayered hierarchical
control for systems like spacecraft than for systems where the components are more loosely
coupled. For example, @nventional computer systelnas alayered controbystem with

device drivers at the bottom, operating systems in the middle, and applmatyrams on

top. But this is only possibleecause thariters of devicedriverscan safelyassumehat
changing the internal state of a plug-in expansion card in a computer will not, say, cause an
adjacent card to overheat. Such assumptions often cannot be made on a spacecratft.

41

X2000 Software Architecture Definition 5/12/97

There aretwo ways to address this problemihe first is to design acollaboration
mechanism by which objects negotiate with one another to itisair¢heir interactions are
properly managed. The other is to have a supervsamyrol mechanisms that manage the
interactions. In practice, both techniques are necessary.

Nested Layers of Control

[“This section seems to say that control decisioas bemade locallywithin objects.That

is, agoal objectcan managehe interactions of thsub-goalsbeneathit, decide locally
whether to abandon a subgoal, etc. However, this assumes there @teractions among
goals, or between a goal and the subgoals of some other goal. In generalnthiestions

occur all the time.

| think this approach willvork well for execution, giventagh-levelplan (or program or
sequence}hat addresses the interactions. rhay also beable to solve execution-time
problems, if thesolutions are guaranteed tohave local effectsand not violate the
assumptions of the high-level plan. However, there will eventually be protiiahtannot

be solved locallyFor example, if dahruster isstuckoff, this will increase turntime and

may impact achievable deadbands and fuel consumption. This has implications for all of the
current andfuture activitiesrequiring spacecratft attitudelhe solution mayequire fairly
extensive juggling of those activities, which magum impact other activities in thelan.

A deliberative system isneeded to reason abodlhese implicationsand resolve the
interactions. Local repair strategies alone are not enough.

The object-basedapproach presented placestrong implementation constraints dhat
deliberative system that may not be effective or efficient.” — Smith]

| agree that locaktrategiesare not sufficient. Thadea is tohave constraints on behavior
flow downalongwith the commands sthat eachobjectknowswhether itslocal actions

are creating global conflict. These constraints would have tgelperated by a deliberative
systemand basicallyconsist ofthe assumpbins made by it on reasonableounds of
operation. If an object canndionor the constraintplaced onit, this information would
flow back up until dealt with at a higher level, including reinvocation of planning. | will try
to clarify this.

Supervisory control does not mean a single point of control for a whole systéma fihst

place, this nopracticalfor distributedsystems. Furthermordés implementationwould
simply create additional coupling mechanisms, compounding the original prabkisad,
consistent with the layered approach desired for this architecture, contraddidncontrol

site is delegatedownward toone or more lower objectworking cooperatively. This
implies several properties of the control hierarchy which must be formally incorporated into
the UFGA architecture.

Goals — Direction tolower level objects isnecessarily at a highével than the
resulting actions taken by theebjects. Thisgenerally means more than simple
deterministic elaboration of thirection, where in simple cases this amounts to
littte more than dorm of datacompression othe interface. It isntended, rather,
that the direction be in thierm of goals whichare attempted in thpresence of
potential uncertainty, including uncertainty ithe details of interaction among
participating objects.

42

X2000 Software Architecture Definition 5/12/97

Constraints — Each object must accept, in anticipationdoécted goals, a set of
constraints orthe actions it mayise to achievéhese goals. Constrainisclude

both limits on resources and deadlines (constraints on the resource of elapsed time).
These may be eith@mnplicit in the goals themselves or invariant properties of the
object, or theymay be separately imposed by the controllatgect. Either way
though, in order for anbject to make commitmentgpwards inthe presence of
constraints, it must carry corresponding authority to impose appropriate constraints
downward.

Bounds— Each object should also expect a sebainds orthe goals requested
of it. Again, these may be eithamplicit in the goals themselves anvariant
properties of thebject, or theymay be separately guaranteed by the controlling
object. Either way, it may be assumed byoaject in making its commitmentkat
subsequent goals will be consistent with these bounds.

Commitments — Each objectmust havethe ability to declare in advance of
accepting a set of goals whether it is capable of accomplishing these goals under the
imposed constraints and obligatedunds. Having affirmed such a request, an
object must sustain the commitment until the it is released by the requasticy

While the commitment is held, the controlling object is free to issue goals consistent
with the bounds and constraints of the original request.

Such commitmentseed not bdard guarantees but theyshould be ofsufficient
confidence to prevent thrashing as a result of too many committhahtzre made
but subsequently deniedhe flexibility gainedthroughthe potentialsoftness of
commitments is a key ingredient to attaining tbhese coupling desired in the
architecture. Note especiallfhatwhen highlatencies arenvolved, commitments
may need to be largely implicit, with the commanding object accepting a migker
that goals may not befulfilled. Alternatively, commitments may need to be
established far in advance with reservations of requasdurcesEither approach
requires some form of planning to anticipate and coordinate needs

Priority — To manage the degree of commitmeamhere guaranteeare not
possible, a basis foudging therelative merit of competingequests must be
available. Therefore, requests mustalseompanied by a statementpoiorities. It

is conceivable that commitments might be imested form wherein successive
subsets might be given increasing priority.

Abandonment— An object must have the ability to gracefully abandon a goal (or

the commitment to a goal). This could be driven by a conflict that has been resolved
unfavorably through priority arbitration, or througte loss of arequired resource
(possible by similar means), due to adetected fault osome otheunanticipated

change that cannot be adequately addressed at the local level. Abandonment requires
notification to the requestingbject. There should be nacircumstances in which

goal failure goes without notification.

Arbitration — An object must be able to resolve competing requesadly rather

than simply referringhem to ahigher catral control pointfor resolution. This is

not required or possible in all cases, but is highly desirable. It may be accomplished
by serializing goks, descoping otemporarily suspending goals in some pre-
establishedicceptablananner, or abandonirgmmitments — all irconformance

to the established constraints and commitment priorities.

43

X2000 Software Architecture Definition 5/12/97

Resources— Making a commitment generally requires two things. Filh&t,goal

and constraints must not conflict wigbreviously accepted commitments in a
manner that cannot be resolved. Second, the object must be able to gain access to all
necessary resources. Thmay involve obtaining similar commitmerftem lower

level objects required to support the goal.

Note in this arrangemetitat parallelpaths of control througkhe hierarchy are allowed
where some objectsiay be servicing more than one controlling object higher in the
hierarchy. Furthermore, there is no explicit requirement for a single superior authority over
all objects. Whether or not this is useful dependghendegree tavhich local conflict
resolution can managdl plausiblesituations. As necessary, t&h control is required to
anticipate and coordinate interactions such that conflicts eitheotdarise or arise only in
locally manageable ways.

Peer to Peer Interactions

The control hierarchy described abodees notcover all relationships andootential
conflicts between objects. This is often because two objects share in a task equally with no
clear precedence betwedmem, andyet may need to communicatth each other or
cooperatively use a common resource which they do not explicitly control.

It may also be becausthe interaction is inalterably outside tlpan of the control
hierarchy. This is particularly true of physical interactions between objeds@sssed
above.

However, even when notstrictly necessary, it may be desirable to deliberately avoid
hierarchical controfor variousotherreasonsyelying moreupon reflexive interactions to
produce aracceptable emergehtehavior. Thismight bedesired, for instance, when the
level of commitment that objects can make is already weak due to environfaetded, or

in critical situations when issues of fault tolerance ma&g precedencever performance.
Such peer to peer interactions lead to a looser degree of cotlaitncan make the system
more tolerant to unexpected conditions. Tolerance to failure in the vertical inicilure,

as described above, supports this approach.

Whentwo objects,neither ofwhich is subordinate tthe other, communicatewith one
another in order to perform their required tasks or through side effects of operation, then by
definition the means bwhich each isassuredhat the other is in a stateecessary to
support the interaction cannot be directly via hierarchical control mechanismsyBeemna
controlling object coordinates peer objects to some extent, it may be difficult to synchronize
the transitions of twoobjects into compatiblestates. Mechanismsfor peer to peer
interactions must therefore be tolerant of occasional incompatibilities and disturbances.

Peer to peer interactions may be active, where one object (the consemuestsaction of
another (the producer) and expects a responspassive, where producer@utput is
unsolicited.Oneway tohandle problemshat areknown to betemporary is to mask the
consequences.

From the producer’s side of an interaction, this can be done by

» extrapolating over a gap in support,
* queuing requests for later response,

44

X2000 Software Architecture Definition 5/12/97

» performing an alternate action that is tolerable for a short time,

or by any other action that satisfies the consumer’s immeuksgds. Fronthe consumer’s
side of amctiveinteraction, this can be done by

* suspending a request temporarily,

* retrying a failed request,

» dropping the request and extrapolating from the last available data,
» selecting an acceptable alternate action, or

» abandoning near term low priority goals.

In a passive intactionwherethe input isdesired,the only choice aconsumer has is to
consider the age of the data. The consumer may therefore temporarily mask a problem by

» extrapolating from the last available data,
» selecting an acceptable alternate action, or
» abandoning near term low priority goals.

When passive interactiorsse undesirablethe affected objectnust adjust its behavior
against the disturbance to compensate for it.

All of these actions are local responses within the scope of a single object. In some cases, it
is necessary fothe consumer to be aware of a producer’s problem befocant take
appropriate action. Therefore, the UFGA must formally suppertollowing mechanisms

in peer to peer communication.

Acknowledgment — In an activeinteraction, a producer musither explicitly
accept a request or reject it within the constraint of a deadline.

Time tagging — In an passive taraction with potential latency problems, a
producer must mark each output with the epoch of its production.nidyslso be
required in an active interaction if the requested data is not necessarily fresh.

No other formal control mechanisms are required.

Longer term incompatibilities must l@oided, but in such cases it is necessaipvoke

the hierarchical control structure descritzdabve,either through appeal to dower level
sharedobject thatserves as amrbitrator of the conflictedesource (the existence of
mutually compatiblestates), or bydirect coordinatiofrom a higherlevel objectwhich
obtains commitments for a mutually compatible state from each object before proceeding.

Resource Management (original cut)

[There are two additional cuts at this sectiobelow. These must beconciled and then
merged.]

A recurring theme inthis discussion habeen the notion ofesources. In general, a

resource can be any entity with an internal state that is subject to competing demands. In the
case of physical resources, examples of stattharamount of availablpower or energy,

45

X2000 Software Architecture Definition 5/12/97

the amount of remaining propellant, the amount of free space on a mass storage device, the
attitude or rate of a spacecraft, or the operating modepefipheral. Ineachsuch case, a

single object should manage the resource, the state oésberce effectively becoming an
appendage of the objestate, either through direct measurement athrough tracking

models of the resource. The object becomes a proxy for the physical resource.

All requirementdor a physical resource should be requestiadthe associatedbject
throughthe hierarchical contradtructure. Upommaking a commitment on behalf of the
resourcethe object could be granting either partial or exclusiveessdepending on the
nature of the resource. Subsequent operations on that resource need not, howeads, be
throughthe methods othat object, but could instead be side effects of anotigect
operating on a physical device.

For example, a commitment for power could be made by the object representiagvidre
resource to another object representing an instrument, while the actual use of the power is a
consequence of actions on the instrument by the other object. These iobgeats atooth

software and physical levelthe software iteractionthroughthe control hierarchy, while

the physical interaction is a peer to peer interaction @rwlrs outsidethe software
architecturealtogether. What makesthis acceptable is that thesoftware interaction
anticipates andhoundsthe physical interactionlhis is the essential role of eesource
manager.

Resources can also be purely software objects with no physical attachments. Examples are
objects which perform algorithmic services (such as cofdved) or perform coordinating

tasks (such as sequencing a maneuverthésecases,the object is often capable of
supporting only one of severalutually exclusive activities at a timeurthermore these
activities often span considerable stretchetinaé wherethe notion of interleaving parallel
activities has little meaning. Therefore, determining the activity in effect becomes a resource
issue and it is necessary falbjects requiringsuch aservice to invoke the same controls

used for managing physical resources.

In the case opure software objectgll operations on the state of the object camiaele
throughthe methods of the@bject, sothere need be no interactions outsideobject
oriented interactiongNeverthelessthey may occurfor various practicalreasons and the
same management strategy can be brought to bear.

Resource Management (proposed cut)
[“Somewhat contradicts existing text.” — Smith]

Various spacecraft activiies compefier resources,and these contentions must be
arbitrated. Because resource arbitration decistamshave far-reaching globahpact on
other activities, resource arbitration requiredetiberativesystemthat canseeall of the
potential interactions antlas the power toreschedule or preempt activities to resolve
interactions. Therare usually manyesource conflicts to beolved, and resolving one
conflict may worsenthe conflict in another arege.g., moving activities toresolve a
contention over spacecraittitude may createversubscription of power)ylanning and
scheduling systemare designed for this kind of deliberation. Reactiexecutiontime
arbitration based on local information will generally be insufficient.

For examplepreemptingpower fromthe catbed heater may appear to lgwad decision
based orlocal information,but disastrous irthe long term.There may be an upcoming

46

X2000 Software Architecture Definition 5/12/97

critical RCS maneuver that requires the catbed heaters to have been on contfoudhbsly
preceding thirty minutes. Since the heater was turned off, the RCS manepustpsned.
However, this maneuvemwas neededfor orienting the spacecrafor taking a science
image.The science image can babstituted for daterinfra-red image, buthat requires
warming up the IRcameranow, which will pull more power. This kind of reasoning
requires adeliberativesystemthat canlook at all of the goals,constraints, resource
requirements, etc., and findgéobally consistensolution. Trying to solve thiproblem at
the local level will not work.

However, ifthe effects of theesource arbitration decisio@se guaranteed to becal,

either by the deliberative component or $stem designthen localresource arbitration

can be done. In general, these guarantees cannot be made for all arbitration decisions, so an
architecture that only supports local arbitration will not suffice.

The architecturenust support aleliberative componerfor resource arbitration, whether
this be anautomated planngiground or onboard) or human planner. It should also
support reactive components for local arbitration in those cases where it is appropriate.

Unpredictable Resource Usage

Resources that cannot be predicted until execution time goedexample ofwhere local,
reactive resource arbitration can be used. For example, it is difficult to predict adtersh
will come on and off, though it is fairly simple to determine at execution time wheatar
needs to be turned on. The deliberative systemallacatesome amount opower for use
by theheaters. A localreactive manager determinesw this power isallocated to the
heaters. If somdieaters must be on @ff for global reasons,these constraints are
communicated to the manager by the deliberative system.

If there is enough time between when #ystem knowshe heateneeds tacomeon, and
the timewhen it mustactually beturned on, the deliberativesystemcan perform the
resourceallocationtask. Local repairs aranade to the plastarting a fewminutesahead,
and the plan continues execution withooterruption. The advantage of having the
deliberativesystem dahe allocation is that it careason about globainpacts if there are
any.

Resource Arbitration Methods
[Needs a small edit to remove redundancies with earlier material.]

Arbitration of conflicting demands for transient but exclusive control of shared resources is
a problem in any non-monolithic contreystem.The UFGA must support aariety of
arbitration strategies at various levels of resource granularity.

In the simplest case, the resource in demand is useful in isolation — that is, delitreaty of
resource alone is sufficient enablesuccessfulcontinuation of an element foftware
execution. By simply queuing demands fioe resource and locating service of this queue
in a single resourcenanagement agent (that is not itsels@urce of resourceemand
conflicts) we eliminate conflict.

When some set aksourcesare useful only in combinationthe possibility of deadlock

arises: task A halecked resource X and will release it only after some doing something
thatrequiresthatresource Y also be lockedhile task Bhas similarly already locked Y

47

X2000 Software Architecture Definition 5/12/97

and can't release it until it has locked X. The problem of deadlock csolezleither by
preventing deadlocks or by detecting and breaking them when they occur.

The traditional strategyor preventing deadlock is to requiedl resource users tck
resources in the same order (in the example above, modify task B to lock X before locking
Y, just as task Aloes).This approactworks, but it requireghat all software developers
agree on a canonicalder for resourcéocking and scrupulouslgdhere to thabrder. As

such it is highlyvulnerable to communication failure among developers and to program
modifications thatsubtly changeprocessing order and thusadvertently introduce
violations of the resource locking protocol.

An alternative is to reduce each complex resoalogation problem to a simplane,i.e.,

handle each set of resources that must be locked in combination as a single virtual resource
and dispatch demands ftirat resource from a singlgqueue. Thisstrategy is somewhat

more robust, but it still relies on disciplined software design: every virtual resource must be
identified as such, and new virtual resources may emerge as development proceeds.

Prevention of deadlock is desirable for reasons of simplicity and efficiency capgahility

for detecting and terminating deadlocks wilvays be needefbr recovery ofspacecraft
functionality in the event of a deadlock preventifailure. Algorithms for automatic
deadlock resolution have been a research fopimany years; they can be expensive to
develop and operate. At the other extreme, deadlocks cdetésed bymission operators
and terminated bpowercycling the flightcomputer. In generathe cost effectiveness of
automatic deadlock resolution (which isday, the rightlevel of investment to make in it)
varies directly withthe incidence of deadlock due to failure in deadjpckvention. As in
object-oriented programming itself, good development practices pay for themselves.

5.2.2 Standard Methods
Points to make:

Control hierarchy, declaration of deaconstraints, etcpeer to peer resolution
mechanisms, resource management, and many other issues mentioned above and in
later sections should be formally required as standard methods on all objects.

The applied standard may be a function oflevel, (e.g., more efficient
implementation atower layers),but should be uniformhapplied at the abstract
level.

5.3 Object Domains

In addition to the normabundling of dataand methods associated wibhject oriented
design the UFGA must address the bundlingnattiple related objects intdomains. The
pertinent relationship among these objectatischment to a commdiody of knowledge
regarding a particuladevice, environment, or other entifyor examplethere might be a
domainfor a camerawith one object of the domairserving asthe hardware manager,
another performing calculatiorfer required exposurdimes at atarget, and a third
producing simulated images for testing, and a fourth displaying images to an operator.

48

X2000 Software Architecture Definition 5/12/97

There are severaleasons for not simplynerging all such objects into one. Most
importantly, theymay be needed in different places at differmies, as inthe camera
example cited above. Some objects of a domain may reside on the flight computer; others in
one or more ground computers. Some objects may be needed earlier than othaysher
discarded after test.

Even when together on the samsomputer, thoughthese objects magupport several
essentially unrelated threads of execution. For instance, s@yde involved in redlime
operations while othersupport longterm planning. Itmay also be desirable toapture

some aspect of systemardctionspanningmany domains in a uniforway besthandled
through separatebjects. For exampleeach domainnvolving a devicethat consumes
powermay be required tsupply a powemodel objectfor that device insome standard

form. Merging diverse functions in one domain into a sirgigect, where not otherwise
required, wouldcreateunnecessary rutime coupling. Maintaining and developingeach

object separately may also be much easier, especially if there are motives for using different
languages for different objects.

Why bother then to bind these objects in any wly@reason ighe commorroots from

which many ofthe implementation details in each objecise. These cannclude, for
example, parameters, modets)d state information. To a largetent, many of these
features can beesolved wherhe software is built.There is more to thisssue, though,

than merelydrawingimplementation detailifom a commordatabase, or grouping such
objects in a composite deliverfpuring test or flight it is quite common to adjusich
information as a result of operating experience, and it is often necessary to do this during
software execution. Furthermore, it generally desirable to maksuch changes
consistently overall effected objects. Inthe cameraexample, changing a sensitivity
parameter can require compatibleanges to planned expostirees, toreal time control
settings, to and simulation and display tools. Overt recognition of such run time coupling is
a neglected butery importantissuethat has created much operational difficulty on past
missions. The UFGA should finally address this issue in a rigorous manner.

5.4 “Real Time” Execution

Much of any system targeted by the UFGA must be regardedraal &ime” system.This
means that actions are subjectt only tological requirements, but ttemporalones as
well. At somelevel this applies tall systems.There arrives a momemthen postponing
any further degrades the utility of the result beyond acceptability. Whdimih@ushed is
merely one’s patience, nearly anything is tolerable. One learns to termgsaxpectations
to avoid disappointment. When physigabcessesireinvolved, howeverthe picture can
become dire.

A great deal of efforhasbeen expended historically in eking every ounce of performance
from embedded computingystems to address this concekliith faster computers
seemingly lifting much of thidurden,the allure of comparatively simple architectures
which do notexplicitly address this issue hascasionally succeeded jrushingreal time

design techniques into the background. It would Estad mistake tdet this happen in the
UFGA. Matters of latency and deadlines permeate everything over time scales from months
to milliseconds. Wherevdime matters,the UFGA mustexplicitly represent the essential
issues.

49

X2000 Software Architecture Definition 5/12/97

One such issue hadready been mentioned discussingcommunication between objects
where repliesare expected. Ithe UFGA each communicatioshould have the option to
carry a deadline, beyond which it may be assumed that the communication has failed.

Another issue was the imposition of constraints on goals, where onemustraint might
be a completion time. THEFGA should supporthe specification osuch constraints and
provide mechanisms to make commitment to such deadlines feasible.

Other time-related issues that has been mentioned are the advance reservasioaroés,
and the duration of commitments. Agaimpth mattersshould beexplicitly addressed
within the UFGA.

Other real time matters to be addressed must include the following:

5.4.1 Efficient Cyclic Task Support

At the most basic level in any systere sampled data implementations of dattectors,
filters, profile generators, contrtdws, and many other algorithms runnicgclically in a
fairly repeatableorder. When thedesigners of these algorithragpressheir preferences,
they almost invariablywish the timing to be perfectly periodiwith no latency between
input andoutput. While this is never realizablesxcept inapproximation,the necessary
imperfections can be maintained within manageable limpsiiposeful stepare taken to
accommodate this requirement.

This hasoften been accomplished in tipast with a simplecyclic executive. This is
efficient, but far too restrictivdor most modernsystems.Cyclic processeshave also
occasionally fashioned from a multi-tasking operatsygtem, but support isgenerally
limited to reading theclock, assigning task priorities, and scheduliilged events.
Additional capabilities have had to be added at the applicksi@h where solutions are
likely to be awkward or unsatisfying. Such capabilities include the following:

Multi-Rate Scheduling — Not all cyclic processesvill want or needthe same
cycle period. It should be possible szhedulemultiple cycles. While it may be
advantageous to usmrmonically relategheriods, this shouldot be a restriction
since occasionally a period dictated by an externgdrocess, such as ratation
period.

Phase Locking — When independergystemsinteract on a cyclidbasis, each

driven by an internal clock, it is usually desirable to phase lock the systems together
such that execution betweemxchanges remairsynchronized. Atthe most
elementary level this simply amounts to agreeing on what timse @nendthat can

be surprisingly difficult to accomplish — even between computers — let alone over
interplanetary distances.

Load Leveling — When multiple cycles are in operation in the same processor,
the computational load can occasionally peak severely as cgoleg into
alignment. An overload can result can be missed deadlines, lost or codlicengs,

and other problems. This can be partially mitigated by shifting the relative phases of
cycles, eithestatically or dynamically as circumstangesrmit. Automatic support

for this process can be very beneficial.

50

X2000 Software Architecture Definition 5/12/97

Load Shedding — When preemptive actions fail to avoalersubscribing
computing resources, it isoften better to perform alternate, reduced overhead
processing for a cycle or to skijpmplete cycles than it is to fdlehind and loose
phase synchronization with otheyclic functions. Such actions, however, can
result in lost synchronizatioavents, missing steps insequencegrocess, and

other problems. Thershould beexplicit mechanismgor taking such stepghat
assure that potential problems will either be handled gracefully or at least recognized
as requiring more serious action.

Time Tagging — When shifting loads, asynchronous eveatsj other variables
in the time line alter data sampling from an ideal schedule, theresaxt is usually
to know at leastvhen asamplewas taken. This allowsonsecutive samples to be
correlated more accurately, sorting out the effects of sampling jitter fronmoes.
Time sampling may have to be extremely precise.

Synchronous Sample Construction — It is often necessary to consolidate
datafrom asynchronous samplésto a meaningful aggregate thagpresents a
single moment in time. Moreover,ntay beuseful to hidethe effects of sampling
jitter and extrapolate such virtual samples onto ideal periodée marks. The same
processcan work in reverse, whereomputedoutputs, ideally put into effect
precisely on some ideal periodic schedule must be adjustedttt the actudlime

at which the action can occur.

5.4.2 Events Driven Tasks
5.4.3 110
5.5 Fault Protection (Function Preservation)

[This is apartial submission. Ineeds to beedited tofit into the outlineand then
completed.]

A "fault" is a physical orlogical defect in acomponent/subsystem. Aarror" is an
apparent symptom/manifestation of a fault. Aailure” is the consequent inality to
perform as designed.

5.5.1 What is fault protection?

Therole of fault protection (FP) is to prevertilures, either by masking faults or by
detection and response to errorSault protectiondecomposesto three phases: detection
of failure symptoms, fault diagnosis, and failure recovery.

Symptom Detectiomonitors sensor information tetectany evidence of a failure. The
complexity of this detection process depends on the diagnostic value of datasam the
observability of thesystembehaviorand on the qualitativeliscriminability of thepossible
behaviors relative to nominal and failure cases.

51

X2000 Software Architecture Definition 5/12/97

Fault diagnosis is the process of explaininfpiture condition to theoccurrence of dault.
Several factors affect trmomplexity of diagnosifiagnosis is greathsimplified when a
failure condition is symptomatic of a fault in a component. Diagnosis becomes significantly
more complex when several fauten result in the same failureondition. Activeprobing

can be necessary to discriminate among several ambiguous diagnoses.

Failure recovery depends ahe available repaircommandghat the softwarecomponent
canapply on a faulty componestich ashard andsoft resetsretrying the operation, or
switching to adegradedmode ofoperation.Whenall possiblerecoveries cannatliminate

the failure condition, the recovery ofast resort is to ddare the componentfailed and
unavailable for operation. Recovery can be more complex when active probing is necessary
to evaluate thesuccess of a recoveaction, whenthe outcome of a recovery is indirectly
measurable, owhenother actionsare necessary to reconfigure the failedmponent or

other resources for recovery purposes.

5.5.2 Architecture for Component-Level Fault Protection

In keeping with"Capability in Layeredincrements”(sec. 3.1.3), fault protection is a
responsibilitythat is necessarilydivided among differenayers of softwarecomponents,

with very localized device FP at the lowest level and system FP at the highest level. Thus, a
software component is characterized by the limited set of responsibilities assigndd to
terms of fault-protection, the limited responsibility of a software component is bounded by
the set oflocal failures in its devicesand sub-components occimg while executing
commands or performing its assigned responsibilities. fBlué-protection architecture
describes how non-local failures are coordinated between a component and its parent.

Key elements of the local FP architecture

e The top-level components in thierlrchy are the different ground teamsperating
the S/C (i.e., engineering, science, payloadsjhich have specificareas of
responsibilities assigned tthem. The engimeing component haseveral sub-
components corresponding to grouoperations and to the overaflystem-level
operation of theS/C. Theon-boardsystem-level component hae responsibility
of handling all failures that have to be resolved on-boardtmit noother on-board
component has a specific responsibility for.

e Within a component, FP muteat the observations it receives as trustworthy; it
cannot make conclusions about the reliability of observations outside of its scope —
that's the fault-protection responsibility of a higher level component.

e For agiven componenthe absence of inpuata and the inability of obtaining
input data aretwo distinct eventsthat may prevent thecomponent of fulfilling its
responsibilities inpart or in whole. When sucbasesoccur, the component has a
responsibility of notifying its superior component that external conditions prevent it
from operatingproperly. Tothe extenpossible,standardmechanisms need to be
used torefer tounknowninputs(i.e., can get databut there isnone), unavailable
inputs (i.e., cannot get dataywhatever itis), under-range andut-of-range inputs
(i.e., input data is outside therange ofallowed inputsfor this component) and
nominal inputs (i.e., input data is normal in face value).

e Within a layer,the following information must bepropagated to a highefayer
when non-local fault protection is necessary: local failure symptoms detected, faults
diagnosedand local recoveries attemptedFailures must bepropagated sothat
recovery/reconfiguratiormay beattempted at a highetevel. Faults must be

52

X2000 Software Architecture Definition 5/12/97

propagated so thagven ifrecoverablewithin the layer via a redundaninit, the
degraded reliability is known.

Fault protection mechanisms at design-time and at run-time

Since software components will come fnmmitiple sources, it isexpectedhat therewill

be somevariability in terms of how fault protection is addressed amowgmponents.
Specifically,there can be nduilt-in mechanism to report, atin-time, informationabout
the specific recoveries that may have been attemptedothamal/abnormal status of input
dataand thechanges of responsibility due to failurér such components, it may be
necessary teitherembed such a componento wrapper toprovide theappropriatefault
protection interfaceswith the higher-level component orincorporate the missing
information right into the higher-level component.

To the extenthat information aboutocal fault-protection behaviowill be shared among
components at run-time, the architecture places requirement®warihis sharingwill take
place. Fault-protection information exchanged between components includes:

From local component to upper-level component:

This information includesnodels used dhe lower-level fordiagnosis/recoveryand the
nominal/abnormal state of the input data used for local fault protection. This communication
needs to proceed on the basis of a publish/subscribe mechanisevéoalreasons. First,

the component hiarchy isnot static since componentsan bemigrated between ground

and flight processorsand among processors in a distributed computingtwork. To
accommodate reconfiguration of tlm®mponent hierarchy, it is necessahat indirect
interfaces such as a publish/subscribe mechanism be usewng components to
reconfigure inter-component communication routing as needed.

From upper-level component to lower-level component:

Although a lower-level component mayurable to handle a non-local failureondition,

the upper-level component should not take over the overall fault protection responsibility of
both. Insteadthe role of theupper-level fault protectiocomponent is to reconfigure the
lower-level component apart of the recoveryprocess. Componenteconfigurations
include:

e turning off a componeriiecause the functionality it requires is no longdequate
for the component to meet its responsibilities,

e degrading a component responsibility to accommodate resoegradationoutside
nominal range.,

e redirecting component inputs and outputs to use redundant information sources and
command outlets in order to avoid inoperable resources.

5.5.3 Strategy

From asystem egineering point ofview, the role offault protection is to prevent the
inability of a component to meet its responsibiliti€slerable failures includéhosethat a

componentcan recoverdocally without a visibleimpact at thelevel of thecomponent
interface.

53

X2000 Software Architecture Definition

Strategy

Focus on Function

Tolerability versus Performance

5.5.4 Local FDIR
Detection
“Parity” Tests (Sparse space of legal states)

Redundancy Based
Model Based
Lower level “Events”

Peer Level Masking

Restoration, Automatic Degradation, or Safing
Notification

Failure Events

Status of Remaining Capability

Requests for Diagnostic Activity

Event Logging

5.5.5 Escalation through Hierarchy
Layered Detection for Coverage
Measured Response

Reactive if possible

Replanning if necessary

5/12/97

54

X2000 Software Architecture Definition 5/12/97

Ground Role
“Not sure where this shouldo, maybeunder fault protection, but the notion of "physical

degradation” should be addressed as an issue for the software to be aaadhahdle. It
is related to periodic calibration.” — Dvorak

5.6 Operation

5.6.1 Startup and Shutdown

5.6.2 Maintenance
Module Replacement & Modification

Parameter Updates
Model Updates
Code Updates

New Objects
Calibration and Checkout

“Explain that there should be a post-launch calibration and checkout phase during which the
autonomydial is set atminimumand lots of telemetry is sent to ground led humans
examineoperation inflight and look for stupid mistakes, likie sign of a gyrobeing
reversed, omwtherthingsthat weren'ttestable inflight system testbed. This especially
important before turning up the dial on autonomy.” — Dvorak

5.6.3 Selective Enabling of Control Layers
“To allow ground operations tgradually turn over control téhe onboard autonomy.
During this phase the ground should be allowed to observetidatitonomous response

would have been had it been enabled; this will ¢nesn confidence in thenboards/w.”
— Dvorak

55

X2000 Software Architecture

5.7 User Interfaces
5.8 Test

5.8.1 Simulation
Spacecraft

Spacecraft Trajectory
Spacecraft Dynamics
Rigid and Flexible Bodies
Fuel Slosh

Rotating or Articulating Elements
Small Forces

Sensor Input

Actuation

Loads

Forces and Torques
Thermal

Sources

Solar, Radioactive, Propulsion, Friction

Measurements
Thermal Effects

e.g., focal length

Telecommunication Links

Environment

Celestial

Definition

5/12/97

56

X2000 Software Architecture

Stars

Celestial Body Ephemeris

Body Features

Rings, etc.

Radiation and Particles

Surface Maps

Forces and Torques

Gravitation and Gravity Gradients
Atmospheres (density, winds, ...)
Contact Models

Radiation

Emulation of missing elements

Hardware
Software

Direct Access Interface

External

Substitution

5.8.2 Monitoring
Interfaces

Hardware Layers
Software Layers

Diagnostic Tools

Detection

Analysis

Definition

5/12/97

57

X2000 Software Architecture Definition 5/12/97

Visualization

6 Functional Areas

“There is a document on the JRLeb titled "Spacecrafinformation FunctionTaxonomy"
by Sandy Krasner, located at: http://fst.jpl.nasa.gov/jpl/function.html. This memo provides
a checklist ofareasfor which requirementsnust be defined fany spacecraft, so it may

offer a fuller outline for section 6 "Functional Areas".” — Dvorak
6.1 Commanding
6.1.1 Goal Directed Behavior

[This is as submitted. There is a littenflict with other ®ctions,and part of the material
might find a better home in other sections.]

Goal Based Commanding

The spacecraftshould support commanding arious levels ofdetail, from high-level
goals to low-level commands. This allows the mission operations team fine control over the
level of autonomy granted to the spacecraft at any point in the mission.

Each goalexpands into subgoals #he levels below it,and managesesources and
interactions among those subgoals as well as interactiongpeéhgoals. By commanding
at the top-most level, the mission controllers can set high-level objectivibe fgpacecraft
which the autonomy systerthen achievesvithout further directionfrom the ground. To
exercise more controthe groundteam cancommand lower levajoals. Thespacecraft
only has autonomousontrol over how those lowlevel goalsare carried out, and the
ground team controls the sequencingnd interaction of those lower levelgoals.
Commanding at the lowest level is analogous to a traditional sequence.

It shouldalso bepossible to command at mixélels. For example, groundan uplink
severalhigh levelgoals, butspecify indetail how one subgoal is to be achieved. The
spacecraft carries out the high level goals autonomouslyfdiioivs the ground directions
in carrying out the subgoal. This allows the ground very @ran control over the degree
of autonomygranted to thespacecraft.The autonomy system must deare of both the
high-leveland low-level commands, sihat the expansion of high-levejoals does not
conflict with low-level directives.

The architecture should also support mixed-level commanding. That is, the spacecraft could
be given a few high-level goals, aiso be told exactihow tocarry out one of thesub-

goals. This capability is necessary for carrying out normal operatiatis high-levelgoals

while performing secialized commanding at aler level.For instance, the ground may

wish to execute &igh-speedturn to jar loose apartially deployedsolar panel, but
otherwise continuenormal operations. Highlevel goals are given for the normal
operations, with a special subgoal for the high-speed turn.

58

X2000 Software Architecture Definition 5/12/97

Goal basedcommanding should suppaptioritized goals aswell as absolutegoals. A
prioritized goal is carried out ibossible,but can bepreempted if it conflictsvith ahigher
priority goal. Priorities can be either static adynamic. In astatic priority scheme goals
have a fixed priority ordering. The system finds a schedule that optimizes some function of
the goalpriorities—e.g., all of the priority one goalsnust be irthe schedule before any
priority two goal can bescheduled, or assigeach goal griority value and maximize the
total value of the goals in the schedule. In a dynamic prisdtyemethe priority of agoal
depends on whaither goals have beestheduledFor example getting thefirst science
image of atarget hasvery high priority,but getting the hundredtimage hasvery low
priority; or the priority of downlinking aparticular databuffer increases as thbuffer fills
and as thenumber ofdownlink passes in which it wgsassed over foother buffers
grows.

Goal baseccommandingequires coordination among thgoals, resource allocation and
arbitration, and resolution of interactions among activities in the sansearatesubgoals.

The interactions can be complex, often involvingseveral subgoals and resources.
Resolving them requiresdeliberativesystemthat hasvisibility into all of the interactions
and has the authority toeschedule activitiesand resources inorder to resolve them.

Automated planning/scheduling systems are ideal for this task.

Simple macro expansion will generally be insufficient, since the way in whigbdrseare
expanded depends amteractionswith other scheduled goalsind activities. Distributing
coordinationeffortsamong goalyesource andactivity "objects"will generally not work
either unlessthere issomeglobal coordinatingentity that hasvisibility into all of the
objects. Howeveryisibility into objects breaks the opaquengssicy of object-oriented
design, and the coordinatingentity would effectively be alanner. This is roughly
equivalent to organizing the planning model igtmals, subgoalsand activity "objects" or
"modules” that contain declarative descriptions dhe resource,temporal and other
constraints. The planning engine then has visibititg the variousmodulesand authority
to change the schedule within certain constraints (such as directives from ground on how to
achieve a subgoal) in order to resolve conflicts.

The goals eventually expand into executable activifieat expansion should be robust to
execution failures. The low level activities should themselvgsdl@riented, inthat they
havesomeset of resources undémeir control and awvell definedgoal to carryout. The
software unit for the activity can decide how to achieve that objegtitxan the restrictions

set by the deliberative system in expanding all the goals for the spacecraft. If failures occur
during executionthe activitymanagershould first try to resolvehe failure onits own,
againwithin the restrictions of the deliberativeystem. Theskestrictionsmust bemet to
prevent the plan from being invalidated. It@nnotresolve the failure, omustviolate the
restrictions to do so, the failure should be passed up to the next level.

Ideally, the same behavior ieepeated athe next level.Thatis, anattempt is made to
resolve the faultvithin the restrictions of the plan alse pasghe failure up to thenext
level. Ultimately, the deliberative system may have to generate a new plan.

One way to achieve this behavior is to pass failures directly tplammerwhenthe lowest
level activity manager cannot resoltleem. Theplanner hasvisibility into all of the goals,
subgoals, activities, resources, etc. It can immediately determine whetHailuieecan be
resolved with a fast local patch to the plan or whether itweke reachingimplicationsthat
require a majoroverhaul. Thisapproach isalmost certainly moreefficient than having
managers for each subgoal, since the information and reasoning imathagerseffectively

59

X2000 Software Architecture Definition 5/12/97

replicates theinformation and reasoning in thelanner, excepthat the managers are
restricted to local reasoning.

Planning and Scheduling

A planner/scheduler generatesquence otoordinatedlow-level activities (a plan)that
achieve aset of high levelgoals. Theplan is guaranteed tcatisfy constraints on
operability, temporabrdering, resource utilizationgtc. that are contained in adeclarative
plan model. Theplanner resolvesresource contentionsand other interactionsamong
activities.

The level of planner autonomy must be scaleable. This allows gopendtions personnel
to a range of control over the spacecraft, from detailed control for special situatichsas
post-launch checkout or amaliesthat the autonomy systersannothandle, to high-level
commanding fonominal operationsThelevel of autonomgan also be startedow and
increased as confidence in the autonomy system grows.

The following scale of autonomy is supportednmystplanningsystemsThese levels all
usethe same planner, bwary inthe level of control thelanner isgiven overspacecratft
operations.

A ground-based version dhe planner isused to expangoals into an activity
sequence (plan). The groutehm carthen modify the plan asdesired (insert or
move activities, relax constraints in theodel [flightrules] to gethighly optimized

plan, etc.). Theplanner will check the plan againstits model for constraint

violations and inconsistencies, buthe groundteam isfree to override these
warnings. Theplan isexecuted by thspacecrafwithout further expansion by an
onboard planner.

e Planner generates plafnom high-level goals. Grountéam cancheckthe plan for
accuracy, butotherwise does nomodify plan. The plan is uploaded to the
spacecraft for execution, and is not expanded further by an onboard planner.

e A plan is generated on thground tosomelevel of detail. An onboarglanner
expands the bottom-most goals in fiten into detailedactivities,and thecomplete
plan is then executed. The grounitherefore controls the higher levepacecraft
behavior down to some levalnd lets the onboargblannerworry about the details
below that point.

e Specify onlyhigh-level goalsand let the onboard plannezxpand them into a
detailed plan of activities.

The architecture should support a planner based either on the ground or on the spacecratft. It
should be possible to have both ground-bamad onboardversions ofthe plannemwithin

the samamission,and to change thiocus ofcontrol between these atill (see scale of
planner autonomy above). Grounthased planningallows more groundcontrol of
spacecraft operations. Onboard planning can also allow detailed control bgrdmd, but

when given fuller autonomy, amboard plannerccan closeloops onboard. Thisapability

is importantfor eventsthat requirethe spacecraft taespond quickly tcenvironmental
information.

60

X2000 Software Architecture Definition 5/12/97

Planning and Execution Cycle

The basic cycle is simplgenerate glan, execute itand when problemsarise generate a
new plan that addresses the problems. A problem is any unplameatthat violates the
assumptions in thplan, or isabout to do so ifeft unchecked. If @roblem has not yet
violated theplan, then itcan behandledwithin the reactiveexecutionsystem. Ifthe plan
has already beewiolated, therthe planmust berepaired. Thelevel of replanning(repair)
required depends entirely on how globally the problem impacts the plan. If the problem has
minor local effects,then areactive executionsystem shouldhave enougtknowledge to
repair the problemwithout invalidating the rest of thelan. If the problem hadarger
effects,then resolvingthe interactionswill require aplanner. If theseeffectsare still
relatively localized, theriterative refinementshould beable to repairthe plan quickly
without impacting unrelatedsegments othe plan. If the impactsare major, then the
refinements will expand tthe entireplan, possiblyresulting in a totallydifferent plan.
Small repairs can be done quickly byostplanners. Problemghat require aglobal replan
can be computationally expensive regardless of the planner used.

Modularity

The planner model can be broken into modules corresponding togoals, subgoals,
activities, resources, etc. This puts altleé knowledgerelative tothese items ithe same
place. However, the "modules” will alwayshave tight couplingwith each other. By
definition, aplanner dealswith global interactions acrossubsystemsnd resources, and
these interactions must be captured in the affected modules of the planner modeadEhis
to tight coupling.

The planning engine hasisibility into all of the modules. There is nopaqueness or
abstraction barrier. This is necessary to reason about all of the constraintmignactions.

The planning problem is essentially a large constraint satisfaction pral@@&®R). Just as a

CSP cannot be easily divided into independent modules, neither can the planning model. If
the CSP could be so divided, it would be easy to solve by decomposition. Ha»&®er,

are generally very difficult to solveand cannot bedecomposed. Theame applies to
planning models, or the knowledge fony deliberativesystemthat needs taeason about

the global interactions among the spacecraft subsystems and resources.

Planning for Multiple Spacecraft

The architectureshould supporgoal-basedcommanding foractivities coordinated across
several cooperating spacecraft. Among the key issues are:

e Distributed planning across spacecratft.
The idea is to planvarious subgoals othe overall planningtask on separate
processors/spacecraftwith a central processor coordinating theeffort. The
subgoals all interact, so communication among processdrde necessarygjther

through the central processor, ordirectly among theinteracting subgoals).
[Capability not available yet, but it is being actively researched.]

¢ Distribution of failure information

e Failure responses may involve several spacecraft.

61

X2000 Software Architecture Definition 5/12/97

e Coordination of events by other than time-based méaugs, when yosee me do X,
then you do Y. But | can't predict exactly when X will happen).

Coordinating activities across spacecraft requiresme level of centralized control and
communication of planningnd execution information among the spacecrdfhe base
X2000 architecture should expandable to support multiple spacecratft.

Verification

- Break plan model intomodules. Typicallythis is everything needed to support a
particular goal or sub-goal. Low enoughevel sub-goalsshould deal with a single
subsystem. Model can be tested from bottom up this way.

- Use scaleablecommanding to tesfrom bottomup. Test lowest-leveactions first
(roughly corresponding tdhe command dictionary)Then test sub-goalsinvolving
interacting subsystems. Keep going to system level behavior by running entire planner.
With sufficiently abstract simulator, can test from thgwn. Provide high-level goals and
execute resulting plans to make ssgestembehavior isworking. Can bedone before
detailed sub-system s/w, h/w and sims have been delivered.

Model validation

The autonomynginewill guarantee thathe spacecraft behavior is corregith respect to
the declarativemodels, assumintpat the engine i9ug-free (this idrue for all autonomy
systems, not just the planner). So one validation task is validating the engine.

The second validation task is validating the knowledge in the models themselves.

6.1.2 Versatile Task Specification
Sequential

Timed Execution
Event Chaining

Concurrent

Coordinated
Competing

Priority Execution

62

X2000 Software Architecture Definition 5/12/97

Combination

6.1.3 Level Of Autonomy
[See “Autonomy” in Appendix A — Definitions]

Spacecraft need to be commandable over a wide range of levels of autonomy, ranging from
traditional open-loop time-based sequences to fully autonomesigonses tdigh-level
goals. Here's a strawman classification of different levels of autonomy.

Level 0: Traditional open-loop time-based sequences.g. "Send
DEVICE_X POWER_ON_COMMAND message at time T1."

Level 1: Closed-loop command$at achieve a condition at a point in time, e.g.
"Turn device X on (and verify that it is in fact on)."

Level 2: Closed-loop commands that maintain a condition otieneanterval, e.g.
"Turn device X on at time T1 and make sure it stays on until time T2."

Level 3: Closed-loopmaintenance otonditions over temporal intervalgshose
endpoints are specified with respect to runtements, e.g:'Turn device X on no
more than five seconds after event E."

Level 4: Closed-loop maintenance of multiple conditions tiwe intervals, with a
mechanism for detecting and dealing with conflictoamditions, e.g."Turn device
X on after event E1, and turn it off after event E2. Make sure it staysleasatlO
seconds," in the case where E1 and E2 are less than ten seconds apatrt.

Level 5: Closed-loop maintenance of multipleeonditions at higher levels of
abstraction, e.g. "Configure for attitude knowledge acquisition with hot backup."

Level 6: Automatic execution of complexetworks of temporallyconstrained
conditions, e.g. "Perform autonav imaging," or "Do orbit insertion."

Level 7: Very high-levegoal-based commanding with autonomous prioritization,
e.g. "Do a site survey and send back the most interesting data,” or "Fulfiirgs
of the following observation requests as possible.”

Note that this is a taxonomy oftommandssent to a spacecraft, not of autonomy
technologies.

63

X2000 Software Architecture Definition 5/12/97

Resource Management

Planning and Scheduling

6.1.4 Execution Logging

6.2 Hardware Management

6.2.1 State Tracking

6.2.2 Configuration Control

6.2.3 Consumable tracking

6.3 Data Management and Telemetry

[This is a start, but more is needed to complete the picture.]

An unmanned spacecraft is notlesktop,not a workstation, but a robttatresponds to
mission events. That robot is connected through a communications network to monitor and
control systems; the network happens to be one for which at least tredioks requires
wireless transmission through space, and the aggregatibe fbot's ownsoftware and

the monitor and control systems on earth is the UFGA.

In order to truly unifythe flight andground systemsand therebyminimize the impact of
flight/ground design trades artide cost of migrating functionality betwedhe spacecraft

and the ground, it is valuable to use the same mechanism for communication between flight
software and ground software as is usedong the flightprocesses. lIfthe flight
interprocess communication mechanism is asynchronous message passing, thehateally
same mechanisshould be used farommunication between fligtgoftware and ground
systems.

Implementations of layered deep space communicatiotocols,including a reliable deep

space transport layer, will support this operational model. Reliable transport entails efficient
transmission acknowledgment amfhta retransmission orpartial loss or corruption.
Delegating responsibilitjor this reliability to standardyeusable protocol implementations

will reduce mission cost anisk andwill simplify flight software,insulating it from any
functional differences betweean-board and deep-space interprocess communication.
Operational differences will afourseremain — time-criticalclosed controloops clearly

can't be deployed across the space link — but modern deep-space communication protocols
can help reduce the problem gfound/space softwanamigration from one ofsoftware
compatibility to one of system configuration.

It's important to note that the client/server modelirdérprocess communication iess
amenable tdhis architecturelssuingtrue remote procedure caltsrer a space link is

64

X2000 Software Architecture Definition 5/12/97

impractical due to theery great distances separatithgg communicatingprocedures: the
sender of an RPC would spend far less texecuting than waitingpr propagationat the
speed of light) of the procedure invocation and the receiver's response.

Asynchronously passed messages,tlan otherhand, are well suited to the delivery of
continuous, open-ended streams of tiagged engineering datalues and instrument
observations. In this model of operations, queues of messagesmsay®f thepurposes

for which files have beemused inthe past (both orthe spacecraft and on tiggound).
However, in order to serve thoparposesthose message queues must be no less robust
than files; in particular, they must not be destroydien power is withdrawn from
dynamicmemory. That is, the messaggueues used for flight/grouncommunications
need to reside in persistent storage metlee randomdata accessmade possible by
modern on-board storage technology (such as solid- state recorders) ptioeitlesibility
needed to implement complex persistent data structures such as message queues.

None of this addressdise fundamental problem dimited space linkbandwidth. As the
requirements for meaningful science data return increase it becomes increasingly necessary
for the spacecraft to convey better information without sending more. Among the strategies
for accomplishing this goabre downlink managementgdata compression, andlata
summarization.

Downlink managementdoesn't reducedata volume but instead justmaximizes
transmission efficiencyAll data to be dowimked are categorized, and associated with
each category are a priorignd a bandwidthallocation percentage. High-priorityata
(typically relating to spacecraft health) are dankéd beforeall lower-priority data.
Among messages of the same priority, accesisedspace link is apportioned according to
bandwidthallocation percentagéhis encouragethe sources of those messages to issue
them inorder by descendingsefulness.The importance andisefulness ofthe data
transmitted over any given intervate thereby increased evéimough the actual data
transmission volume is not.

Individual data items can beompressed ireither "lossless” or "lossy" fashion as
described elsewhere in this documé@rite reduction irbandwidth consumption resulting
from data compression, andhe corresponding increase igfficiency of space link
utilization, can be dramatic.

Finally, a potentially even more powerful way to increase link efficiency is simend

the products ofdataanalysis and summarization rather thla@raw dataitself. On-board

data summarization algorithms are still a rese&opict, andthey rely on the availability of
large on-board data storage resources and spare processing capacity, butrassiighs

range further from Earth aravailabletransmission bandwidth diminishelse costs of

enabling this in-situ analysis are increasingly justified.

65

X2000 Software Architecture Definition 5/12/97
6.3.1 File Management

Uplink

Downlink

6.3.2 Telemetry

Scheduled

Event Driven

6.3.3 Data Management

Compression

Culling

Data Mining

6.3.4 Mechanism for Feedback into Subsequent Activity Plans
6.3.5 “Beacon mode”

6.4 Guidance, Navigation, and Control

6.4.1 Pointing System

6.4.2 Navigation

6.4.3 Maneuver Planning

6.4.4 Dealing with Constraints

6.5 Power and Thermal Management

6.6 Telecom

66

X2000 Software Architecture Definition 5/12/97

6.7 Science
6.8 User Interface
6.9 Test

7/ SOFTWARE VERIFICATION

[This section needs to be coordinated with other related sections of the document.

Also, there were two contributions to this section (both below) which need¢cdneiled
and then merged.]

7.1 Cut 1l

Verification is theprocess ofchecking that thesoftware implementationsatisfies the
requirements. Verification is much more than just after-the-fact unit and siesténg. It
begins with requirements and extends beyiomal softwaredelivery to in-flight behavior
auditing. Verification takes severdbrms and appears idifferent places and different
phases of the development process.

This sectionaddresses a few kagsues for verification. Some tie issueslisted below
have no direct architectural impact, but are included to encoavegeness oferification
impacts on the design, development, and testing processes.

» Testable requirements

» Scenario specifications

* Detailed simulation environment

» Unambiguous interface definitions

* Embedded constraint tests

» System-level behavior auditing

o Safety kernel

* Incremental builds and automated regression testing
» Code inspections

7.1.1 Testable requirements

As far as possible, each requirement should be stated clearly ethatighcan beverified,
preferably without human involvement. Requiremeht aretoo abstract or vague to be

67

X2000 Software Architecture Definition 5/12/97

verified should be decomposeéato specific testablsub-requirements. Requiremertisit
cannot be tested without a human in tbep shouldraise a red flag becaudbat
complicates automateekgression testing ansuggests avague or excessively abstract
requirement.

7.1.2 Scenario specifications

In order to construct good system-level tests, system engsteauidefine not only the
nominal scenario for a mission but also the typetamithg of failuresthat will particularly
stressthe software'srecovery mechanisms. System engineers shoakk thefollowing
things explicit: boundary conditions, outlying kadceptablevariations in values anelvent
times, and type and timing of particularly likely failures.

7.1.3 Detailed simulation environment

The flight/ground simulation environmeshould bedetailed enouglandaccurateenough
to "fly" the mission, aswell as to verify individualsubsystems. Such amvironment
keeps designers and developers honest and doeflawotthem toignore detailghat will

harm them late in the integration phase when the real hardware appears.

Simulation modelshould besufficiently accurate that spacecraftgineers respect the
results of testing with simulated subsystems. Such models should: (a) interact appropriately
with other simulation models througélectrical/mechanical/thermal/etpathways, (b)
support reasonable failure modes, (c) report when a subsyst@Eimgsmishandled by the

flight software, (d) support checkpointing, and (e) support time-warping.

7.1.4 Unambiguous interface definitions

A component interface should be defined precisely enough that it can be checked statically
(as in a compiler check of the number and type of arguments) and dynafasaltyange

checks on valid values and as checks on protadbkerence). Notéhat dynamic checks

that are active during ground testing may (optionally) remain active during the mission.

7.1.5 Embedded constraint tests

To simplify debugging, errors should loetected as close to tseurce as possibl&his
means that every componatitouldinclude constraint tests on itsputs as well as self-
tests on itsown computationsWhen a constraint is violatedliring execution, this helps
enormously inlocalizing the site of theerror. To support such testthe run-time
environment must provide a standard mecharf@nreportingconstraint violations and
specifying a reaction (e.g., abort, warn, or log).

7.1.6 System-level behavior auditing
In addition to having a mechanidor reportinglocally testable constraint violations, the

run-time environment must also provide a standard mechafisnmaking selected
activities visible to a system-level behaveuditor. Typically,the selected activities will

68

X2000 Software Architecture Definition 5/12/97

include events,statechangesmeasurements that are relevant to the verification of flight
rules (e.g., "never pointcamera at sun”) as well as checkingdafsign artifactqe.g.,
“initiate-turn commandshould be followed byturn-complete confirmation within 2
minutes”). In addition, retries and recovery actisheuld be reported gbat it isknown
that they are happening.

7.1.7 Safety kernel

During a missiorthere aresome errors for whiclietection alone is not enough; some
actions must beuppressed and somieactions must be corrected in order to prevent
damage to or loss of the spacecraft. Accordingly, there should be a "safety tetssts

logically between théardware and other fligrgoftware. Normally this safety kernel is
transparent to and non-interfering witine higher-levekoftware,but in cases where a
spacecraft hazard is imminent, it may suppress actuator commands or actively command the
spacecraft into a safer state. This safety kernel is an important safeguard against mistakes in
flight software as well as mistakes in uplinked commands.

7.1.8 Incremental builds and automated regression testing

As much aspossible, functionality should beadded to a system incrementally, as a
sequence of correctness-preserving transformatfems example the system should be
rebuilt every night and tested against an ever-increasing suitegodssion tests. This
approach sometimes requires careful planning and coordination among members of the
development team, but it is usuallyorth it because it avoidshe extremely difficult
problems of integrating and testing multiple new/revised components.

7.1.9 Code inspections

Code inspections can be valuable in finding errors and omissatysin the development
process,but they arealso time-consuming if conducted as formal meetings of several
people. A less intrusive approach dode inspections is to givile code to one or two
colleagues for inspection, with comments expected within a weskoorBesidedinding
errors,inspections tend to encourage a consistent style of coding and commenting, and
reduces project vulnerability to the loss of a programmer.

7.2 Cut 2

7.2.1 Verification and Validation

The current conventional wisdom is that the software developed for future miggions

so complex that traditional testirgnd validation methods will no longepply, and
radically new approaches will be needed. While it is true that testing methodology will have
to change, this change does not have to beieatadeparturdrom traditional methods. In

fact, most of the featurégbat make testing difficult already exist in "traditional" spacecraft
control software. For example, it isommonly believed thaautonomy software is non-
deterministic, andhat this presents an extraordinary nésgting challenge. Iract, all
autonomy software developed at JPLd&te is completelgeterministic. It is truehat the

69

X2000 Software Architecture Definition 5/12/97

system behavior is not always predictable, but thigradictability arises because of the
unpredictability of the environment, notlack of determinism in thesoftware. This
situation entirely identicalvith that in traditional attitude contrgloftware, whoseletailed
behavior is not predictable a priori, but which is nonetheless deterministic and testable.

In fact there is no fundamental difference in testability between autosoftware and

attitude controkoftware. Bothare closed-loop control mechanisms designedniintain
certainsystem invariants ithe face of externallisturbances. Irthe case ofACS, the

system invariant is spacecraft attitude, ahd disturbancesare externaltorques and
imprecision in the attitude control actuat@sd sensors. Inthe case of'autonomy"”

systems, the system invariants are constraints on the system state expressed at higher levels
of abstraction, and the disturbances are hardware failures.

The key to verifying both ACS and autonomsystemsand indeed any complesoftware
system, is tenumerate thdesign invariantshe system is intended to maintain, and the
circumstances under which they are to be maintained, and thenthatithesystem does
indeed maintainthose invariants. Thiserification can bedone empirically through
empirical testingwhich can be exhaustive if the term is taken to mgguniring coverage
over the range of invariants andisturbances, notontrol branch points) oformal
methods.

The key to this approach is enumerating the invariantdetgrbances against which one
wishes to verify the system's behavior, which can be quite complicated.

Onehelpful design principle whicbhan makehis job easier is Law of Cognizant Failure
[Gat91]. The LoCF states thatinstead of designing systethat neverfail, one should
instead desigisystemsthat detectfailures whenthey occur. Inotherwords, all system
invariants should be of tierm, "The system iguaranteed to either achieve X, or signal
that X has notbeen achieved.” Cognizafatilure is useful because it is much simpler to
design systemthat are guaranteed to detéatlures thansystemsthat are guaranteed to
avoid them. Ifall failures arecognizant, therthe systemcan bedesigned tautomatically
recover fromall failures throughlayered recovery procedes. Atthe top-level of the
recovery hierarchy is a more-or-legaditional safe mode, whichthe spacecraft enters
when all other avenues of recovery have been triedaaled. This recovery of last resort
is exhaustively testedsing traditional methods. Thisapproach carmguard against both
hardware and software failures, and provedafidence in the overall reliability of the
system even if it contains untested components.

(0]

70

X2000 Software Architecture Definition 5/12/97

8 Hardware Requirements

8.1 Modelable Behavior

8.1.1 “Delta” Commands Restrictions

8.1.2 Time
Synchronization
Time Tagging
Commands

Data

8.2 Self Safing

8.2.1 Reset to benign, passive state
8.2.2 Regular software access necessary to sustain active states
8.2.3 Protected access to critical functions

8.3 Fault Protection

8.3.1 Internal detections and responses
Built In Tests shouldn’t lie
No ambiguous status

E.g., Rollover

71

X2000 Software Architecture Definition 5/12/97

No unobservable critical faults
8.3.2 Containment regions

8.3.3 Isolation

Independent access to isolation mechanism

8.4 Redundancy

8.4.1 Symmetry

8.4.2 Independence

8.4.3 Cross Strapping

8.5 Bus and Network Issues
8.5.1 Master Selection

8.5.2 Masquerading Terminals

(0]

9 Appendix A — Definitions

9.1 Software Architecture

“The primary objective of architecturdesign is to develop a modular program
structure and represent the control relationships betwesstules. In addition,
architectural design melds program structure @detdstructure, definingnterfaces
that enable data to flow throughout the program.”

[Roger S. Pressman, “SoftwaBEngineering: A Practitioner's Approach”, Third
Edition, 1992.]

“Architectural design involves identifying the software components, decoupling and

decomposinghem into processing modules armbnceptual datatructures, and
specifying the interconnections among components.”

72

X2000 Software Architecture Definition 5/12/97

9.2

9.3

[Richard E. Fairly, “Software Engineering Concepts”, 1985]

Autonomy

Colloquially, a system is "autonomous" to dent that it accomplisheasksthat
previously required a human-in-the-loop. For example, a flight/ground syiséém
automaticallydiagnoses spacecraft faultsnmre autonomous ithat respect than
one that doesn't. There is no absolute autononsgale, justrelative differences
within functional areas.

The scope of potential new autonomous capabilities is as broad as the range of tasks
currently performed bypeople. Opportunities exist in sequencplanning,
navigation, fault protection, engineeringdata summarization, sciencedata
processing, and software verification.

Capabilities that make system more autonomogan exist inground software as

well as flightsoftware. Someapabilities can be situated in eith@ace, such as
high-level activity planning; others must necessarily be onboard due to reaction-time
constraints (stuck thruster) émitations of telecommunication data rates (feature
recognition in numerous images).

Architecturally, autonomous "agents" replace human-in-the-loop
calculation/reasoning and must therefeupportthe necessary interfaces and close
the loops. Given the many different kinds of knowledge and reastahigumans
bring to problem solving, there is no standard architecture for agents, bbasieo
design principlesre widelyused. Firstknowledge abouthe problem domain is
represented in a declaratif@m. This inspectable knowledge base descrikat

is known, possibly in the form of models or rules or cases. Seconaethed for
when and how to apply theknowledge is defined in a [deterministigiference
procedure. Thiseparation of knowledge and inference procedure yieldadily
inspectable base of knowledge whose clear semantics stem from a formally defined
inference procedure

Object-Oriented Software

An objectis a collection of data itenand subroutinethat operate othose items.
The data items arknown asthe object's slots or instance variablesand the
subroutines are known as the objectethods

An active objectis an objectith its own thread ofcontrol, i.e. anobjectwith a
program counter and a stack or continuation chain included among its instance
variables.Active objects are sometimeslled processeqif the objectshares no

state with any otheobject), threads(if the objectsharesglobal state with other
threads), ortasks(a termused in vxWorks, where iheans the same thing as
thread).

An objectclassis a description of a set of objects which share common methods

and whoseinstance variables share a comneiructure. Anobject which is a
member of the set described by a cladgen®wn as arnstanceof the class. Some

73

X2000 Software Architecture Definition 5/12/97

programming languages allow the properties of one class to be defined in terms of
the properties oanother, a feature known amheritance A complex collection of
classes defined in terms of one anothekriswn as aclass hierarchy In some
programming languages, classes themselvesbjects, and thusan be instances

of ameta-classi.e. a class whose instances are other classes.

A first-classobject is an object that can be manipulated as a mondithity, i.e.

the entire object can be passed as a single argument to or returned as a value from a
method orsubroutine. Adistributed objectis an objectwhose methods run on
multiple processors, and/or whose slots reside in multiple memory systems.

A program isobject-orientedo the extent thatny persistent datum in the program

is a member of anbject, andhat datum isaccessed and manipulated exclusively
throughthat object's methods. lotherwords, aprogram is object-orientedthen

the set offunctionsthat can operate oany particulardata item is explicitly or
implicitly enumerated. Object-orientedness is a continuum, not a discrete property.

Note that it is not necessary tise aso-called "object-oriented" programming language to
write object-oriented programs. Objects, both active and passive, can be constructed in any
programming language, though it may require more effort on the part of the programmer in
some languages than others.

Caveat: It is important to distinguish the general concepolgect-oriented design
from any particular instance of an object-orientiedign,and to keep in minthat
using object oriented design methods is by itself no guarantee of produgiugl a
design.

10 Appendix B — Examples

10.1 Model Based Software Design

There are two examples that serve to illustrate the idea of model-based software design.

10.1.1 Fault Protection Monitoring

In DS1 program the modébr a fault protection monitor is a specification of tiata
transformation and filtering to be applied on raw senstafor the purpose ofdetecting a
specific fault symptom. The model assumesahitecturevheredatatransformations are
domain-specifiamathematicafunctions (e.g., the Cassini-style phase portrait rotation of
control error andate of controlerror), while data filteringoperations are either custom-
made orreused from a library ofyeneric data filteringcomponents(e.g., threshold
checking and detection, transaction success/failure tracking, nominal range tracking).

Fault protection on DS1 relies on one code-generation tool to transform each monitor model

into a suite ofproducts ranging fronflight software source codeglemetry packet
definitions, softwaranterface headers,and script-based unit test driveoftware. The

74

X2000 Software Architecture Definition 5/12/97

specific aspects of the targsoftware architecture are not embedded inside the code
generator but are instead kept into separate models called templatissthniie thesyntax

and format of each specific product to be generated such as sodece In this approach,
reusability can be exercised in multiple ways such as: writing new models for building new
monitors, writing new template files to produce different products from each model, adding
new data-filtering components to extend the range of symptom detd¢etbniques, and
adding newmodeling constructs to incorporatdditional information aboypurpose and
functionality into the model and to exprdsswv thisadditional information isised incode
generation.

10.1.2 Software State Charting

State charts is a well-known organizipgradigm to describe behavioral information. A
state chart can bgeen as being piece of the model of aoftware component. Ithat
context, astate charsoftwarecode generator is a model-based tib@it can be exploited
towards promoting reuse of imfoation to reduce redundant expressionsthef same
model in a variety oforms such as specifications, softwanglementation, functional
documentation, and test drivers.

In DS1, statecharting isused to describéhe design ofdata filtering components for
symptom detection in fault protection monitoring. A code generator tool ghasfuces

flight code for each data filtering statechart. This achieves the reuse of information to avoid
unnecessary duplication of effort in terms of design and implementation: the same statechart
fits both purposes.

Furthermorethe same code genera@iso produces Javade which is themusedalong
with a simple Java&UI to make a standalone unit test simulation of the data filtering
statechart. In this manndghe same statechartrisused athe processlevel not only for
softwaredevelopmenfpurposesbut also for software documentatioest and training
purposes.

11 NEW MATERIAL NOT YET INCORPORATED

75

X2000 Software Architecture Definition 5/12/97

11.1 Modeling

This is a checklist for hardware modeling. It describes the kinds of information captured in
design models that subsystem vendors must prepare.

11.1.1 Introduction (For Vendors)

An autonomous spacecralftas goals. Itmakes plans to accomplish those goals, it
commands the subsystems to carry out those plans, it mahimsgbsystems taonfirm
command execution, and when misbehavior is detected it isolates the fault to one (or a few)
candidates and then performs appropriate recovery actions.

The autonomysoftware that does all of this depends on using knowledge eéch
subsystem — knowledge such as its modes of operation, commepelistional
constraints, observable measurements/sensors, kinds of &matsecovery actions. The
checklist below enumerates the kinds of knowledge that we needyronNotice that the
level of detall that wevant is roughly equivant to high-leveldesign specifications with
emphasis orthe information thaflows into and out of thesubsystem; a 1-pagelock
diagram is often the right level of detail for looking inside the subsystem.

11.1.2 General

* Please define all acronyms (for the acronym-challenged among us).

11.1.3 Architecture, Inputs, Outputs, Design:

* Provide a block diagram where the subsystem is a black box showing:

* Physical information pathways (VMHBAS53, 1773, analogligital, serial, optical,
radio) and where they connect to the rest of the spacecratft;

* Physical relationship of this subsystewnr.t. the spacecraft frame and othmajor
subsystems.

» Define all inputs to subsystem:
» Software commands via each bus (VME, 1553, 1773, ...);
» Associated command parameters;
» Other signals via non-bus pathways (analog, serial, digital).

» Define all outputs from subsystem:
» Status and data via bus and non-bus pathways;
» Electrical signals via non-bus lines.

76

X2000 Software Architecture Definition 5/12/97

» Describe the design of the subsystem itself through:

A block diagramshowing its sub-subsystemand interconnectionfor power,
communications, and sensors;

A brief description osubsystenBEHAVIOR (for commanding, monitoring, and
inferring its state);

A brief description of subsystePURPOSE (fomodeling itsfunction, evaluating
degraded capability, and planning its usage accordingly).

11.1.4 Sensors / Observables:

* What is the rationale for having and placing each sensor?

* Describe the status and data variables that can be read.

e For each sensor/variable:

How is it read?
What kind of value does it return: bit, integer, float, state?
What are its absolute minimum and maximum values?

What is its nominal range, and does it depend on operating mode or other variables
like temperature, pressure, voltage, etc.?

How noisy is the returned value?

What kind of noise filtering or smoothing should be applied?

How accurate is the sensor at launch? a month later? a year later?
Is there an independent way to corroborate its value?

Does it degrade in a predictable way?

What's the probability of failure?

When it fails, how is the measured value affected: is it shigh, stucklow, zero,
erratic, or unchanging?

If it returns a value outside the nomimahge, isthere a simplavay to distinguish
between sensor fault versus system fault?

11.1.5 Monitoring:

Is there a direct (or indirect) way to confithrat each command is beifgr hasbeen)

carried out?

Is there a way to determine the current operating mode?
When an autonomic (non-commanded) transition occurs, how is that reported?

Are there clear boundaries of normal operation?

1

X2000 Software Architecture Definition 5/12/97

Are there cleasignatures of abnormal operatioR@r example, ishere a combination
of sensor readings, possibly observed over time, that signifies a fault?

11.1.6 Modes & Transitions:

Draw a state-transition diagram where:

 Eachnode represents a high-level operating modehefsubsystemincluding
startup, shutdown, normal, degraded, and restart modes, as appropriate;

» Each link represents a legal transition from one mode to another.
* What is the initial mode following power-on-reset?
* Which transitions are commanded and which are autonomic?

» Can the subsystem be commanded into a "self-test" or "diagnostic" mode where the

subsystem goes off-line and checks itself for faults?
* Are there modes that should NOT be used?

» If the behavior within a high-level operating mode dzest be described with
another state-transition diagram, please provide that.

11.1.7 Operational Constraints:

What constraints exist across all modes (e.g., sun exposure, thermal, power, etc.)?
For each command, are there situations when it should NOT be issued?

For each mode, are there commands that should NOT be issued?

Are there SEQUENCES of commands that should NOT be issued?

Should certain commands be avoided?

Should the time in certain modes be minimized?

For each command, are there any timing constraints?

Are there preconditions that should be met before certain commands are issued?

Are there startup and/or shutdown delays for some components?

Are there components whose respective commands (or states) must be coordinated?

Are there time constraints on any modes or transitions?

78

X2000 Software Architecture Definition 5/12/97

11.1.8 Resource Usage, Environmental Impact, Life Span:

* Quantify nominal resourcasage (power, propellant, bus occupancy, SSR memory,
etc.), e.g., "when on, consumes 50W on the 28V bus".

» Describe environmental impact ather subsystems(e.g., disipates 100W heat,
causes vibratiommadiates electromagnetiields, causesoltagespikes on powebus,
etc.).

* Quantify life span of components iterm of allowedoperations and environmental
exposures.

* Does execution of certain commands or duration within certain modes:
« Consume significant resources (e.g. power, propellant)?
* Interfere with other subsystems?
e Cause physical degradation?

11.1.9 Faults, Failures, Recoveries:

Definitions: A "fault" is a defect in a component of thebsystem; a "failure" is an
observable manifestation of a fault.

» Fault/failure/recovery information can be described tatde whose column headings
are: currentmode, observed failure, possible faylelative] probability, recovery
action, and next mode.

e For each fault:

* Is there away to confirm it, possibly byexamining several measurements or
observing behavior over time?

* How urgent is it to perform recovery?
» Can it cause consequential faults?

* For each recovenaction, whatare theundesired consequence®., the effects other
than fixing or bypassing the fault?

» Are there plausible double-faults that should be considered?

» Does thesubsystenever initiate AUTOMATIC fault recovery? Ifso, howcan it be
determined that that is happening?

11.1.10 External / Exogenous Events:

* What are the2xogenous eventhat affectthis subsystem? Includexternal stimuli,
time-outs, and faults.

79

X2000 Software Architecture Definition 5/12/97

11.1.11 Complexity / Cost Estimates:

It could be useful to providestimates of complexity or coftr a particularsensor or
functionality. There may be opportunitiésr subsystem designers teducecosts by

taking advantage of the relatively sophisticasgdtem-wide monitoring, diagnosis, and
recovery software provided biyll autonomy. For example, if a subsyst@wontains a

costly sensor for measuring a value that the software can infer by other means, then system
engineers may elect to eliminate the sensor.

80

X2000 Software Architecture Definition 5/12/97

11.2 Architecture

11.2.1 Introduction

11.2.2 Document Objectives

11.2.3 Design Guidelines

11.2.4 An Approach to Layered Design
11.2.5 The Software Design

Summarized Architecture Guidelines

In order to ensuréhat theX2000 architecturecoversall of the architecturguidelines, the
guidelines are enumeratedld&. Also included is thechapter, section and subsection
number of the previous chapters from which the guideline was surmised:

[Enumerated list of s/w design guidelines]

In the following sections we prescribe a common basis for the Xa@bitecture so as to
satisfythe architecturguidelines. Throughout we specify whichtbé design guidelines

the prescribedrchitectural component impaatsing the above enumerated Iwith the
notion ‘{<guideline>}. In this way itwill be clear that theguidelines arethoroughly
addressed byhe architectureThat is not a guaranteghat the subsequentspacecraft
software design and implementation will embody the design guidelines. Although, without
a suitable architecture, the spacecsaftware could at best onfyincidentallysatisfy the
guidelines.

The Object-Oriented Approach

The object-oriented approadias emerged athe dominant approach to treoftware
engineering of large, complex, mission-critical software applications. [...]

The 'object’ in object-oriented ike softwaremodelfor a physical oconceptualexternal
object'. The software object is often confused whih external object that lmodels.This
is desirousecause it is an indication that teeftwaremodel has'covered'the external
object accurately. Any disparity between the two objects warrants concern.

Like external objects, objects have identity, state and behavior. [...]
A spacecraft is a physical objetttat is amenable to modeling assaftware object.

Spacecraft have identity like ‘the Cassini spacecraft’. Spacecraft havikastatass, cost,
subsystems anlife expectancy. Spacecraft have behaviortito, to navigate, toeturn

81

X2000 Software Architecture Definition 5/12/97

science data, and toshutdown. Spacecrafare certainly large (if notphysically,
programatically), complex and mission critical.

A spacecraft is the pinnacle in a abstraction hierarchyexignds down tdhe bits in a
memory location, the amp-hours in a battery, the Kelvinscatlsedheater, andhe grams
in a fuel tank.

Conceptual Framework

Basic concepts provide a basis for communication on softarahitecturassues. Inwhat
follows we quote definitions [Booch94] for several concepts that are generally important in
software engineering artiat are often théocus in anobject-oriented desigprocess.
Descriptions can béound in variousreferences; descriptions on thapplicability to
spacecraft is current lacking, herein.

Abstraction: "An abstraction denotes the essential characteristics of an digéct
distinguish it fromall otherkinds of objects andhus provide crisplydefined conceptual
boundaries, relative to the perspective of the viewer."

Encapsulation: "Encapsulation is tpeocess ofcompartmentalizing the elements of an
abstraction that constitutes structure and behavior; encapsulats@nves to separate the
contractual interface of an abstraction and its implementation”

Modularity: "Modularity is the property of a system that has been decomposed into a set of
cohesive and loosely coupled modules."

Hierarchy: "Hierarchy is a ranking or ordering of abstractions"

Typing: "Typing is the enforcement of the class of an object, thathobjects of different
typesmay not beinterchanged, or ahe most, they may be interchangeshly in very
restricted ways."

Concurrency: "Concurrency is the property that distinguishes an active object fradhabne
is not active"

Persistence: "Persistence is the property of an object through which its existence transcends
time (i.e. the object continues to exist after its creator ceases to exist) and/dji.epde
object's location moves from the address space in which it was created).”

Modeling

Models in an object-oriented approach are derivech the vocabulary of the domain for
which the software is employed. This is after all one of the significant advantages of object-
orientation in that itprovides acommon vocabularyor software developergjomain
experts andiusers. Given a common vocabulary miscommunicationleass likely; one
impact is likely a reduction of errors in the software product.

Using model-based design for spacecraft softwaik, for the first time, provide an
accessible, uniform vocabulary for discoubstween disparateivisions. The vocabulary
is grounded uportthe entities and activities in spacecraft andsjpdice, exploration and
science. The models thus reflect the core capability of JPL.

82

X2000 Software Architecture Definition 5/12/97

High-level models are inherently frédeom obsolescence because tleeg based on the
physical and conceptuslorld, that is thedomain. Thus, if it isappropriate to model a
spacecraft as havirgtitudecontrol, navigation anccamerasubsystemsoday it is highly
likely that, short of atechnologicalrevolution, speecraft will still have the same
subsystemgwenty-five years fromnow. This is not to saythat the specifics (read,
implementation) ohavigation, for examplewyill be unchanged duringhat interval. It is
expected that implementations charge the interface, captured by thmdel, likely will
not.

Lower-level model will naturally reacbbsolescence. In particular, hardwasgecific
device models invariably change as technologygmesses and even more frequently as
versions change. Aexample might b@ew imaging technology leading to moeecurate
star trackers. However, the model just abtheshardware specifienodel, saythe generic
'star tracker' modeljkely need not changbecause, saythe fundamentals of tracking
stars are fundamental.

Given good modelghe stability of the domain is reflected in the stability of sb&ware
models.

Modeling Languages

Software models must be expressed in a softwardelinglanguage. To be useful the
modeling language must be: 1) expressive enough to capture the domain, 2) precise enough
to reduce ambiguity iexpression, 3) process independant] 4) understood bgll team
members. These characteristics enable a modeling language as an effective tool.

The "Unified Modeling Language" (UML) is a consolidation of several modeling
languagesEach of the modeling languages: Boo@ooch), OMT (Rumbaugh), and
OOSE(Jacobson) had dain strengths and weaknesses and leeh adopted by large
numbers of developers the object-orientedoftware communitylUML builds ontheir
successes.

From the UML v1.0 Summary document - the unification effort established four goals: "1)
to model systems (and not just software) using object-orientedsystems, 2) to
establish an explicit coupling to conceptual as well as executable artifactad®jréss

the issues of scale inherent in complex, mission-critical systems,and 4) tocreate a
modeling language usable by both humans rmadhines."The UML does not address
issues in the software development process; alththegtyML authors promote process

that is "use-case, architecture centric and iterative and incremental.”

The UML modeling languageught to be adopted bx2000 asthe standard modeling
language.

Having a standard modeling languadees notpreventuse of specializedlanguages.
Standardization simply providesbasis forcommunication Yet, within different teams or
technologies, other modeling languageight berequired. Twoexamples are the model
languages used by the DS1 PS #relDS1 MIRteams. Stillideally one language fits all
although not without c&in hardship.Multiple languages reduce readability and increases
specialization at the expense of shared experience.

Amongst different tools, choosing one that is standardized and proven can reduce risks.

83

X2000 Software Architecture Definition 5/12/97

Architecture

Softwarearchitecturegonsist of botHogical and physical viewgBooch94]. The logical

view of a system "serves to describe existence and meaning of the key abstraction and
mechanisms that foriie problenspace” whilethe physicalview of a system "describes

the concrete software and hardware composition of the system's context or implementation.
Both views have both static and dynamic components.

In the object-oriented domain the logicakw is comprised othe classes,the class
relationshipsthe objects, andhe mechanisms of collaboration between abgects. The
physical view is a specification of whetke classes and objectare declared, what
processors and devicesists, howare theprocessesllocated between processors and
what scheduling mechanisms are employed.

The physical progssors andlevices do not as a rule appear in kbgical view. For
example, in a user interface with a class such as <windineprocessor upon which the
<window> is displayed would not benodeled explicitly(provided active and passive
objects existed explicitly - see the definitidmslow). However, in @aobotics application,
like spacecraft, where resourcae constrained and interactisnth the environment is
paramount it is perhaps a necessityrniadel theprocessoiitself (say for massthermal,
and memoryproperties). Inthese cases,caution must beobserved tomaintain the
distinction between logical and physical views.

Relation to 'Ground'

Although it is rather premature within this documentdiscuss'ground’ and 'ground
software’, there is onienportant point to be made in light of the architectdigisions of
physical andogical views. In aphysical view a'spacecraft’ consists ane or more
processors on-boarhd one or more process off-board, orthe ground.The physical
view will havetwo largeboxes ondabeled'flight' and the othelabeled'ground.’ In the
logical view flight software and ground softwasee both spacecrafsoftware and what
functionality is where ighus largely irrelevant.The logicalview will not have any box
labeled 'ground' but instead might havéoxes labeled 'debugger’ or 'database’ or
‘display.’ The distinction between physical alogjical views is an empowering one and
leads naturally to the unification of flight and ground software.

Definitions

The following definitions are from the 'Unified Modeling Language' or from Booch94
("Object-Oriented Analysis and Design with Applications"):

General

[... specific relevance ...]

OBJECT: An entitywith a well-defined boundary andentity that encapsulates state and
behavior. State is represented diyributes andelationships, behavior is represented by
operations and methods. An object is an instance of a class.

CLASS: A description of a set of objedisat sharethe sameattributes, operations,
methods, relationships, and semantics. A class is an implementation of a type.

84

X2000 Software Architecture Definition 5/12/97

METHOD: The implementation of anperation(‘a service to effectbehavior’). The
algorithm or procedure that effects the results of an operation.

GENERIC/VIRTUAL FUNCTION: An operationupon an object]...] implemented
through a set of methods declared in various classes related via their inheritance hierarchy

MESSAGE: An operation thame objecperforms upon anothefhe termsmessage,
'method," and 'operation’ are usually interchangeablgn what follows, we avoid

'message’ in favor of 'method’]

EXCEPTION: An indication that some invariant has not or cannot be satisfied.

CLIENT: An object that uses the services of another olgéttier by operatingipon it or
by referencing its state.

SERVER: An object that never operatggon otherobjects, but is onlypperatedupon by
other objects; an object that provides certain services.

Concurrency

[... specific relevance ...]

THREAD-OF-CONTROL.: A singlgprocess.The start of a thread of control is the root
from which independent dynamic action within a system occurs; a given systgrhave

many simultaneous threads of control, some of which may dynamically come into existence
and then cease to exist. Systems executing across multiple CPUs allow for truly concurrent
threads of control, whereas systems running on a singled@Rthly achievethe illusion

of concurrent threads of control.

ACTIVE OBJECT: An object that encompasses its own thread of control.
PASSIVE OBJECT: An object that does not encompass its own thread of control.

SEQUENTIAL OBJECT: Apassiveobjectwhose semantics are guaranteedly in the
presence of a single thread of control.

BLOCKING OBJECT: Apassiveobjectwhosesemantics are guaranteed in the presence
of multiple threads of control. Invoking an operation of a blockibgctblocksthe client
for the duration of the operation.

CONCURRENT OBJECT: An active objeethose semantics are guaranteed in the
presence of multiple threads of control.

SYNCHRONIZATION

[... specific relevance ...]

SYNCHRONIZATION: The concurrency semantics of an operation. An operation may be:

SIMPLE: only one thread of control is involved.

85

X2000 Software Architecture Definition 5/12/97

SYNCHRONOUS: An operation commences only when the sender hagiated the
action and the receiver is ready to accept thethod. The sender andeceiver will wait
indefinitely until both parties are ready to proceed.

TIMEOUT: The same as synchronous except that the sender will only viait a
specified amount of time for the receiver to be ready.

BALKING: The same as synchronous except that the sender will abandon the operation if
the receiver is not immediately ready. The same as timeout with a time of zero.

ASYNCHRONOUS: A sender may initiate an action regardless of whether the receiver is
expecting the method.

Cautions

Within JPL isoften observedhat theholy grail of flight software architecture is the
specification of a messageassing paradigm for a uniform communication interface
betweenall software modules (includingground as well). This observatidoelies a

misunderstanding othe role of messagpassing in a softwararchitecture and more
importantly the different communication requirements in the hierarchy of Bigftivare

functionality.

1) Messag@assing is apecific implementation of inter-object communication. There is
never a need to elevate any one implementation to the level of interface as that unnecessarily
constrains the interface.

2) Closing control-loops occurs at matgmporal levels witheach levelimposing a
different performance requirement on the inter-object communication (marseryspeed,
reliability, etc.

Specifically, in terms of theprior definitions, a message queue is one of several
implementations for a asynchronous method between two active objects. It is nothing more
than that which leaves elevation of message passing to the interface as an undo constraint of
the inter-object communication mechanism.

Object-oriented development is more thast knowing C++, Java or CLOS. It is a
discipline in itselffor which notmany people are adequatéigined. In spite othe large

software engineering component within the JPL workforce is probably safe tbasajPL

faces ecritical shortage of properly trainesbftware engineers. Givethat flight projects

have traditionally been hardware-centric, the shortage is particularly acute.

A Spacecraft is a complex beast and it is not likely to fit neatly into one paraliffjenent

views, approaches and implementations are required under different situations and times. It
is inappropriate to place arbitrary restrictions on a design because of some digsingoto

a particularparadigm.The bestthat can behoped for isthat ones toolsare general and
expressive enough teapture the domain anthat ones design expresses enough
encapsulation to allow 'arbitrary’ implementation.

Design Space

The X2000 s/w architecture'gical view is conceptually a multi-dimensionalesign
space.'Eachaxis inthe design space representdaggely independent aspect of the s/w

86

X2000 Software Architecture Definition 5/12/97

design.The coordinate along any singi&is is specified appropriatefpr that particular

axis. Because the design space idfierarchitecture'dogical view, the space deals solely

with software models. Thus physical view concepts, such as of processors or devices, are
not represented in the design space.

The independence allows One or two aspects often

The axis are: functionality, faults, hardwaresimulation and missiongach isdiscussed
below

Functionality

The primary axis in the X2000 design space is the ‘functionality’ axis. This axis models the
hierarchy of software functionality without consideratiorhafdware, simulation, mission
requirements or evefaults. As suchthe axis modelsthe ideal, generic spacecrafipon

which spacecrafsystems engineers, mission planners stidnceworking groupsbase

their analysis upon. Thus, @anplementation othis axis aloneshould be useful astaol

for these three groups.

In spite of its simplicity, the functionalityaxis captures much dhat is important in
spacecraft software.

Along this axis are four coordinates each of which is described subsequently.

Drivers: The origin on the functionalitgxis is comprised ofdrivers’' which are the
software models for generic hardware devices. Examples of dimgtugle: valve, sensor,
switch, battery, heater, waveguide, antenna, gintha, gyroscopesolar panellens,
cameraand engine. This driversoordinate is itself alsbierarchical:engines might be
composed of valves, nozzlefsiel tanks and propellant; camenasght be composed of
lenses, imagers and film; solar panelght be composed afires, ribs,currentsensors,
actuators and amorphous silicon chip arrays. As models of generic devices, drivers will not
generally be detailed to the level of 'bits in a control word' or ‘remote terminal number on a
1553 bus' or 'memory-mappedoff-board VME memory." Such details are
implementation, not interface.

Drivers need notorrespond to a physicdevice everthough drivers, aslefinedabove,
model generichardware.That is, drivers can correspond tovirtual hardware thereby
allowing thehardware behavior to bienplemented insoftware. This is ofgreat utility
when, forexample, a hardwamevicehasfailed but there is redundant informatitimat
allows thehardware to be simulated. Or when mass constrdiotate that a particular
sensorcannot fly butthat sensor'sreading can be inferredrom other spacecraft
observations.

Having a drivers coordinate dhe functionalityaxis in itself is awonderful advance for

future JPL missions. In pre-X200fight software architectureshe drivers were what

attitude control systems (ACS) and ground-based sequencers commanded. And, the drivers
directly mapped to a physical device ahdsdirectly manipulated bits anous addresses

and memorymaps. Inthese early architectures thess little of a generic interface and

even less reuse. The core competency of JPL is in spacecraft systems and the software was
reinvented time after time.

87

X2000 Software Architecture Definition 5/12/97

[Class of'drivers' that areresources -each hardwaredevice isobviously a precious
resource as is power, etc.]

Commanders: Next up on the functionality axis are ‘commanders' of the dExamsples
are: reactioncontrol, attitude krowledge, attitude control, time-based, open-loop
sequencers, navigation and science.

Prior to DS1 {footnote-1 Prior to DS1 and subsequerihéodemise of the DSRemote

Agent' - that is, aside fromthe short oneyear of on-board, high-level spacecraft
autonomy.} the commandelavel was the highestevel within spacecraft flighsoftware.
Actually, the commanders level and examples described above is even slightly higher then
tradition spacecraft because the navigation and scismosystems did not command.
Whereas, in this X2000 design they do potentially (subject to a full-up analysis phase in the
software development).

Configurers: The thirdevel on the functionalitygxis are ‘configurers'which reconfigure
commanders to avoid resource constraints. Examples of configurers are: power and thermal
subsystems. Configurers essentially dole our resomeeded by commanders amifght

have limited reasoning capability to optimally, though locally, configure the resources.

[Commanders manage devices, Configurers manage resources?]

Automates: The highest level on the functionadigs are'automatestwhich comprise the
autonomysubsystemshat close the commandirand configuration control-loops at the
highest level. Exampleare: planners/schedulersnode identification and reconfiguration
systems, etc. Like any softwangodule described up t@wow, there is no distinction as to

what is on-board, on-board inc@mpanionprocessor, oranother spacecraft or on the
ground because thelesign space exists the logicalview, not the physicalview. Of

course, because 'automates' operate at the highest-level which is often (but not necessarily)
the level with the lowest temporal completioonstraints, it is possible fdine 'automates'

to be off-board.

Any given mission includes all of these functionality levels.

Hardware

The 'Hardware' axis has binacgordinates ofpresent'and’'absent’; it ighus not quasi-
continuous as ithe functionalityaxis. The hardware axis embodies software models of
physical-view devices; this is not to lsenfused withthe hardware itself although the
software modelswvill be generally as close to thHeardware as possibl&Examples are
software models for: SpectrumAstro SoHEectric Propulsion (SEP) Engind)Tl 1553
VME card, CT-401 Fixed-Head Star-Tracker, JPL General Purpose Board (GPB), etc.

The software models of hardware devices senimptement the interfaces defined on the
functionality axis. Several hardware devices might be requiredhtplement a particular
functionality model and a particular hardwalevice might implement several functionality
models. This is a many-to-many relationship.

For a given mission, as hardware components are added, the software structure tends to be

'mirrored’ about the functionality/hardware axis because the abstract functional models map
to the hardware devices. This is not at all wasteful because, inthadiinctional models

88

X2000 Software Architecture Definition 5/12/97

are completely reusable and given the expected stability, the functional models can drive the
standardization of spacecraft hardware. This point is revisited in depth later.

The 'Functionality-Hardwareplane iswherethe hardware peopldive. In particular, the
'drivers’ coordinate othe functionalityaxis andthe 'present'coordinate on théardware

axis is where hardware ought to liv@ught to live' because thalrivers coordinate
providesthe idealizedsoftwaremodel thathardware developers could strif@. This is

thus unlike the 'present’ hardware coordinate itself - wherein hardware developers produce
software models that are drastically different from mission to mission. Prior to X2000, JPL
mission find themselves in this second situation - an costly situation.

Faults

The 'faults' axis representthe departurdrom idealized software modules in terms of
exceptions and includes recoveries in terms of excepigndling.Like the 'hardware'

axis, this axis has binary coordinates of 'present’ and 'absent’. Examples of exceptions and
exception handlers are: switch-stuck-off with handlers of switch-off, switch-on and warm-
then-switch-on, etc.image-buffer-full with handlers ofliscard-buffer, discard-image,
flush-buffer/save-image, etc.; and others.

The 'functionality-faults' plane represents how spacecraft system engineers think abstractly
about spacecraft - devoid bardware,simulation and missiospecifics. Thisplane has
software models foeverything that is generic about spacecsfstems - perhaps it
embodies the content of a first coarse on spacecraft systems engirHegipdane is truly
core-JPL and core-spacecraft engineering.

The 'functionality-faults-hardwarespace representie flight software; it istraditionally
what flies on a particular mission. Note that this ignahesrole of simulatiorsoftware as
flight software to backugailed hardwarethis role is importanbut, perhapsaside from
Cassini AACS, not employed often enough to increase spacecraft robustness.

Simulation

The'Simulation'axis has quasi-continuous coordinates representing degree-of-simulation
or fidelity. The zero coordinate dihis axis has ngimulationcomponentAny software
module in thedesign spacean be simulated and it is important to nthtat simulation
should not be limited to hardware (and the environment).

The 'simulation-hardwaregblane iswhere spacecraft hardware simulation generally takes
place. The simulator interface is exactly as specified by slftware model for the
hardware device. The simulation often is performed remotely finenflight CPU beause
hardware deviceare themselves located remotelyd connected to the flighiEPU via
buses, like the 1553.

Simulation of théfunctionality-faults’ plans ahe 'drivers' coordinate plays amportant

role thesoftwaredevelopmenprocess. Such simulation is of thegeneric, lowest-level
drivers - it allowsall higher functionality to be developed and tested independently of
specific hardware. When hardware becomesentthe softwaremodelfor the hardware
need only be used to implement the generic interfacétemmjonce the generic interface is
thoroughly tested with the hardware, the overall software is functional and tested.

Mission

89

X2000 Software Architecture Definition 5/12/97

The 'Mission' axis has coordinates representiegch mission. Forexample: X2000,
X2002, X2004, etc. In a senghjs isthe singlemost important axis tensureNASA's
'smaller, better, cheaper' mandate. This axis allows one to track, from missngsiton,
the re-usability of the software.

If the software design is done wethe developmenfior any particular mission ought to
follow roughly the following course:

1) Selectfrom a large number opredefined,implementedand testedsoftware and
hardware components (for example: switches, batteries, star trackers, etc.).

2) Commission new software modules tbe new hardwarelevices(for example: the
DS1 ion-propulsion-systems, a whiz-bang super-hi-resolution camera).

3) Extend existing higher-level functionality models has tesknology is developedor
example: animproved planning engine, aomputationally less intensive on-board
navigation algorithm, or a new fuel-conserving RCS control mode).

4) Statically configure the selection dfardware and software components. The
configuration includes component connectivity, mass, orientation, etc.

The selection of components is performed by spacexyafems engineers in response to
requirements specified by mission planndise new software modules aride extending

of existing models is designed and implemented by software engineers in consultation with
domain experts. New technologies are developedmapigmented by technologgxperts,
generally prior to but often commissioned by a particular mission.

Development Approach

Given the flight software design space aride design guidelinegietailed in theprior
chapters, we are prepared to enumerate specific development approaaissdihat the
software requirement@re met. Wehighlight six approaches: modularity, configurability,
visibility, commandability, asynchronousity adgnamism. B&ch of these impactsne or
more design guidelines and follows from the nature of spacecraft and their environment.

Modularity

Nothing has a bigger impact on a software development process than modularity.
[Impact on design, implementation, integration, testability and re-usability]

The 'Slice Model'

The 'Slice Model' in software designtise anti-thesis of a modulaoftware design. The

slice model was employed (and invented) out of necessiySih Itsneed arose because

of the view that autonomy experts in reactive, deliberative and reasoning systems needed to
focus ontheir autonomytechnology. Consequentfiight softwareteams were composed
based ortechnological expertise rather thBased on moduladomain units."Without

domain units there was no formal process by which to emisatrex particular domain was
covered functionality. The resulvas, for example, perfectly functioning autonomy
subsystems and nguarantee that the camera gopulsions system would function in
closed-loop, top-to-bottom.

90

X2000 Software Architecture Definition 5/12/97

The'slice model' has horrible impact onintegration.Each technologyad a'slice' of a
particular domain unit, say the camera subsystem, alongshites' from telemetry real-

time and other components. Some of the components are of very high level (say at the level
of mission goals) and some thfe components are atvary low level (say atthe level of

flipping bits in adevicedriver). Afunctioning domain unit requires a smpiéce of each
component - those pieces get merged during integratiothasdonly athe completion of
integration will a domain unit even functidor the first time. This integratiorprocess is
actually what development should be; integration ought to be between domain units.

Although this problenwas identified duringhe DS1process,its impact througout the
development was vastly underestimated.

Impact of Autonomy

Autonomyhas a signifiant impact onmodularity. The impactarises because autonomy
systemstend to employ a global view whereas modularity demandtsca view. For
example, model-based-reasoning systemdafat protectionuse inputs froomumerous,
isolatedsensors,models of spacecraft and environment, and inference engines to infer
some aspects dhe spacecraft's state. Bys global nature, autonomyoses ahreat to
modularity.

Modularity places significant requirements amonomy. Autonomous systerogn not be
designed to usurp modularity even if it is at the expense of autonomy. Modularity is simple
too important of a design principle to be abanddioed relatively small(but admittedly
important) goal of autonomy. This pladbe burden of conformance dhe developers of
autonomy.

The key to achieving modularity in light of autonomy is to split the autonomous system into
several parts: dow level part thatcontains models andata; a high-level parwith
configurability, commandability, goals and global models; anskew level with the
inferencingengine.The low and highlevel parts populatehe inferencing engine with
models and thus the inferencing engine is functionally below both parts.

One specific example is that dhferred sensors.' Arinferred sensor is a subclass of
'virtual sensor'(non-physical senso@nd thus ofsensor'itself. Like everysensor an
inferred sensor is aractive object thaasynchronously reports changestire value of
whatever thesensor purports to measufEhese properties obviousiypake an inferred
sensor indistinguishable from a sensor and thus @ugpatible replacementsr physical
sensors.Any client of asensorneed not be concerned with from where hmw the
sensor'svalue is determined anthus 'inferredsensors'allowed the desiredevel of
modularity.

Inferred sensorgerive their state from global inferences performed dher entire
spacecraft stat@past and present) and basedtba models resident in the inferencing
engine. The effect is as desired: global inferencipgpvides anaccuratevalue. The
modularity is as required: nelient need know the sensor's implementation. The
implication is enormous.

Configurability

Like any fault tolerant, resource constrainggtem, spaceaft require unprecedented
levels of configurability. (Thisprecedence iased onthe generallylow levels of

91

X2000 Software Architecture Definition 5/12/97

configurability exhibited on spacecraft outside gsbund-basedntervention andattitude
control systems.) Because of modularity requirementthe configurability must be
provided locally, on a module-by-modudasis.Three general areas of configurability are
considered: fault protection, resources and structure.

Fault Protection

Configurability in fault protection allows for different exception handlers to be employed in
response to an exception. The choice of an appropriate handler is generally basaty,on
many factors some of which are local, others of which are global, all of which vary in time.
Configurability implies that a particular exception handler nestcbe staticallychosen at
design time but can be installed as desired.

Exceptions and exception handlare definedocally. The exceptions are definddcally
because onlythe module carknow what exceptions are appropriate afrdm which
exceptions the module cannot guarantee local recovery. The exdemtidiersare defined
locally because only the module can know the contexthiich the exceptions happen and
what actionsare needed ta@ecover. Notethat handling an exception need nwhply
continuing from the exception but can instead imply aborting the computation and waiting
for higher level aid. It is expected that a single exception might have many haaltllwes;
exceptions and their handlers are developed, tested and delivered as one.

Configurability in fault protection increases the robustness of spacecraft. Where appropriate
exceptions get handled at the lowest possible level and allow activities to proceed in the face
of uncertain conditions. Obviously, for some exceptions, it is not appropriate to handle the

fault locally. Expect those exceptions to have an 'unable-to-handle' exception handler.

Resources

Configurability of resources allowfr different methods of resourcalocation to be
employed inresponse to a resource requésike exceptionhandlers, resourcesan be
allocatedbased orlocal or globalconsiderationsDifferent allocationschemes might be
appropriate at different times. Configurability implies that tiegis forallocation need not
be statically chosen.

Resources themselvdsave a multiplicity that influences the allocatidrasis. Some
resources might be 'single' (a camera), or ‘'multiple’ (disk files) or ‘continuous’ (power). It
is usually apparent frore 'units' used in describinghe resource whichmultiplicity it
demands. For example: 'the camera,’ 'a file' and 'watts'.

It is useful to think of resources as having a resourceagarwhichserves ashe broker

for resource requests. A common example of a manager is a computer's 'memory manager
which maintainsthe memorysubsystem by recordingiemory in use, free memory,
available memonand which takes reques(sia 'malloc()’) for allocation of memory.
Memory itself is dmultiple' resource in which sharing of an individual uméy or may

not be allowed.

Resource allocation can be of many types. The most common is for the resource to be used
exclusively at the discretion of the resource user. There are otherrigpes:whereby any

and all sharing is allowed; negotiated by, say, priority; or planned on a devitengatal

basis. All these types have a place in spacecraft resource allocation.

92

X2000 Software Architecture Definition 5/12/97

Structure

Configurability of structure allows for different components to be employeésiponse to
different requirements, faults or resource limitations. Examples replace a faulty
physical gyroscope with an inferregnsor of precession; swhptteries on a cell failure;
during encounter use a reaction control algorithm providing greater spacecraft stability at a
cost of greater propellant use; use switch X' when requesting a power resource.

It should benoted thathis level of structural configurability can bever-used bymaking
everything modifiable. Such overuse is important to avoid becacdsaradefinition of the
static properties of spacecraft software has a tremenchpast on thedesign andiltimate
performance of the software system.

Visibility

There is an inherentlesign tension between visibility and encapsulation. Design for
encapsulation reduces interfaces by making as mugbossible be anmplementation
issues; design fowisibility expands interfaces by making more and more accessibly
through the interface. Encapsulation is important as a gesesign principle; visibility is
important when autonomy is involved.

Autonomous systemsften have a deliberative componemhich bases decisions on
models installed in an inferencing component. The manteteefrom somewhere anthat
placeneeds to behe softwaremodelitself. Thatis, where possible and tthe extent
possiblethe software model must provide access the information needed by the
autonomous system. Providiagcess implieshat the informatiormust be both present
and accessible. Keeping the information in the software model supports modularity.

One example of visibility is the requirement to hassplicit, detailed state transition
diagrams. Statéransition diagrams are axpression othe dynamicprogression of a
model; they are particularly important @mgineeredreal-timesystemsBoth nominal and
fault behaviors are expressed in state transition diagrams.

Visibility to state transition diagrams provides, in large degree, the static models needed by
autonomous systems for planning and fault protection. Planning concepts such as: timeline,
state token, and action token map nicely to: active object, state and event. Similiyt for
protection wherethe sub-portion of astate transition diagram related faults could
populate the autonomy models.

Another visibility example is the need for power tables by flight software. Paies are
traditionally adesign issue in whiclthe power used by components and under what
conditions is published in a tabular form. The table is used by ground sequencers to ensure
that thepower budget during a mission phase is not exceelisa.natural placdéor the

power nformation is withthe softwaremodelfor the devicewhich usesthe power. The
information needs to besed bythe devicewhen requesting power; it must bisible so

that deliberativecomponents camneason abouthe power demandedor a certain global
activity.

Commandability

[nothing yet. What was | thinking. Callbacks?]

93

X2000 Software Architecture Definition 5/12/97

Asynchronousity

Spacecraft, byheir nature and in spite alur bestengineeringefforts, are event-based,
asynchronous systems. Fauttscur and those fauliare always asynchronous. Sensor
states change based aotuation andhose changeare asynchronous owing to various
sources of indeterminacyhe environment is unpredictably rif@th interestingscientific
events like volcanic explosions and those events are always asynchronous.

Softwaremodeling of this asynchronousity requirdst the software be event-based,
multiprocessing with a preemptive scheduler. Event-based ensures that external events map
accurately intosoftware eventsMultiprocessing is a requirement because events arise
independently and simultaneously from differesburces. Preemptive scheduling
acknowledges that some events are more important than others and that there cannot be one
processor for each source of events.

Use of event-based, multiprocessing doespnetiude time-based sequencing or periodic
sampling implementations. Therogression oftime is itself an event, albeit a
programmable one, in which a desired timing or periodicity is fully specifiable.

The distinction between multiprocessor andltiprocessingpreemptive scheduling is an
implementation detail and ought not to influence the software design.

Dynamism

Spacecraft exist in a dynamic environment and are expected to perform different activities,
derived from high-level goals, at different times. Examples of activities are launch detumble
and checkout, thrusting cruise and encounter.

Software modeling of this dynamism requitbat thesoftware requirements not impose a
priori limitations on the computationaksourcesallocated toany particularmodule.
Obviously computationatesourcesare resources andgieed to be modeled asich and
subject to the same requirements as otlespurces. Howeverttempts to preallocate
memory or file space on jper modulebasis or tolimit the number of processes/tasks
runnable throughout a mission or to resttiet CPU available to a particular active object
are largely unjustified. Doing such ignores well established technokgibsageal-time,
incremental garbage collectors and multiprocessor load-balancing algorithms for example.

Development Environment

Like the development approach, the development environment pragfoarole toensure
that the software requirements are met in a timely and cost effective manner.

Project Database

The projectneeds a singlecentralized, project controlledatabaseThe database is to
contain anything and everything related to the project. This ought to inchiiemally: 1)

Project Requirements and Finances 2) Staff and Organization Charts 3) Mission Design 4)
Hardware Design 5) Software Design, Bironment and Implementation 6)
Documentation, WEB anatherwise 7) Science and Engineeribgta Results. The
database and theardware on which it rungecome the legacy of thgroject. All future

access to the sciendatashould beaccessible via the databa@dmit not to exclude other

94

X2000 Software Architecture Definition 5/12/97

distribution media like CDROMS). The WHgages (public and private) exisir all time.
Thetools used fodevelopment and testing exfstr all time. Themonthly schedules and
cost estimates and progress reports and up-scope analyses exist for all time.

The project database appears in diggmbosition tothe entrenchegrocesses. Aroject
passes through the PDC, the Design Hub, the FST and the Ground data systalosgand
the way leaves a bit of itself in each of theaypoints.These waypointhave asense of
control; but none of consultatiom®r delivery. Thisentrenchedorocess is inverted. The
waypointsneed to deliver tools and expertise and documentatidghetgroject and they
need to interface their databases with the projects database.

These waypointsre like eat-in-onlyestaurants: yogomein, you eat and leave;you've
got a memory, perhaps a buzz, perhaps heartburn; there are no doggy-bags, no take out, no
delivery.

A project database is fast step towards a paper-less design. If hardwaa®/CAM

systems eventuallgre integratedvith the databasethen thatwould be onelarge step

towards ensuring that hardware and software models are synchronized and that data needed
for the required software model visibility is accurate.

Uniform, Stable Tools

The reality of software development is that developers work in remote locations, on distinct
networks andfiles systems, todifferent daily time schedules and with different
backgrounds Add to this mix a projectwith multiple hardwaretarget platforms and
software tooldistinct atall locations and prone to unannounced version update and you
have a disaster. A disaster not unlike others of recent note.

Onerequirementor the development is that it heniform acrossall machines routinely

used for development, have a minimal set of target platforms (ideally a single platform) and
be unchanged beyond month one. This is nadeal situationthis isthe definition of an
environment (albeit a static one). If a project finds that time is spent, beyond month one, on
compilers and version contreystems andile system organizations thehat spacecraft
project is doing development outside of core NASA and JPL competency.

The apparenbardware platform othoicefor spacecraft appears to MME cages with
multiple single-board-computemachrunning VxWorks. Thischoice is well begnd the
previousstate of having a custom operatisgstem (OS) on a mission-by-mission basis
and beyond th@romises of some future GBat will unify the universe. IfVME CPUs
running VxWorks isthe flight configuration(and if JPL's core competency is spacecraft)
then the use of VxWorks boxes ought to be promulgated loudly and widely.

Note that thesoftwarearchitecture presented this document makeslear the distinction
between logicaliew and physicaliew. The selection of @rocessor and OS belongs to
the physicalview and is thus aelatively minor component in a spacecratiftware
architecture.

[Software specifics]
Having uniform,stable tools is an important prerequisite to having develapens with

one mind-set and share one experienceth&snumber of platforms argbftware tools
increases so dodile ability ofany one person tfathomall the details of eactplatform.

95

X2000 Software Architecture Definition 5/12/97

The result is subgroups of developers that kndat about afew things and dittle about
other things. The lose of one group jeopardizes the entire project - in the extreme the lose of
a single individual can sink the project.

The value of a sharedevelopment experience and failitation by limiting thehardware
and software options cannot be under-emphasized.

Development Process
[More on specific phases... at least: requirements, analysis, design, implement, test]

The developmenprocess putghe software design andlevelopment together into a
manageable entity. With the process come the generic milestonstffimg requirements
in number and expertise, the documentation framework, the organization chart, etc.

Language Independent

It is important that the process be suitable for different softwapementationanguages.
Specialization up front on C++ or Java or CLOS is an indication that the moghksg is
not accurately modeling the domain becausaviously the spacecraft domain is
independent of the implementation language.

The implementation language even need not be properly object-oriented. Clearly spacecraft
have design requirements and platform constraints within which object-oriented languages
might not fit. Again, modeling is what is important, not the implementation language.

lterative, Incremental

The developmenprocess needs to hierative and incremental(see "DevelopingObject-
OrientedSoftware..."(DOOS)). Such a process is ‘incremental by requirementkain
each incremenprovidesadditional functionality tosatisfy the customer's requirements.
And 'iterative’ in that each increment includes seawork. Such a 'stronglincremental’
process isappropriate when: 1) requiremeit® uncertain and complete, 2) technologies
are use with whiclthe development amenfamiliar, and 3) project isomplex. Again, see
DOOS for the above as one example.

The process needs to be understoo@lbglevelopers andll developers must sign on the
processAny group that, duringhe developmenprocess,concludesthat theprocess is
inappropriate for them needs to be reconstructed or replaced. The middle of a process is not
the appropriate time to debate the process.

Team Composition

Softwaredevelopment needs to be performedsojtwaredevelopment experts; not by
people knowledgeable in spacecraft technologi&sch development experts will be
comfortable with an object-oriented, incrementigrative developmenprocess,with
designs based on reusmodularity and encapsulation and wite value of a stable
uniform development environment.

Ideally the spacecraft technologists would have the expertise in software development but it
is unreasonable texpect thata-priori. After all, 'NAV' people need to be knowledgeable

96

X2000 Software Architecture Definition 5/12/97

about stellarimage processing andriangulation andACS' people need t&now about
control theory. Without the expertise isoftware developmenthe appropriate roléor a
technologies is as '@omain expertwith important roles inthe software analysis and
design phases of the software development process.

Conclusions

[Summarize link between 'design guidelines’ and responses. |

11.2.6 Functionality

11.2.7 Verification (and Testing)

11.2.8 Implication for Hardware Architecture
11.2.9 Project Issues

11.2.10 Conclusions

97

X2000 Software Architecture Definition 5/12/97

11.3 Plug-and-Play Architecture

[This is two separate submittals. No attempt has been made yet to merge them.]

11.3.1 Human organization

Softwaredevelopment is a humaendeavor, and it ismportant to recognize that the
information flow among thehumans writingthe software may or may not reflect the
structure of the informatioflow among the components of tiseftware. Ensuringhat
information flows properly between thesoftware developers is #ast as important as
ensuringthe sameor the software components, and perhapsre so because human
communications channels ameisy and bandwidth-limitedThe design ofthe software
team should be an integral part of the design of the software structure.

For example, considahe software needed to control a device. Thisftware can be
written by the person or team that designed the device, but this téketyiso have more
training and experience in designing devices thragramming Alternatively thesoftware
can be written by a trained programmno is not initially familiar with the operation of
the device. It would be advantageouth# softwarecan be structured isuch a waythat
the device designer can write the device-specific software with less effort than ittalauld
to transfer the required knowledge to a programmer.

Realizing thevision of acompletely plug-and-play architecturevhere device designers
write the codefor their devices, scientistarite the code to control theexperiments,
spacecraft designers writkown the flight rules forthe spacecraft, and everything comes
together automatically, requires somelical rethinking aboutwhat it means to write
software. It isalmost certainly the case that to realibes vision will require languages
capable ofexpressinghe kinds of informationthat humans exchangahen designing
software systems,including models, priorities, intentionsand reasons, not just
procedures. This is a veipng-termvision. In the meantime, simply recognizirtgat
informationflow among humans is an essential part of making a spacewetis an
important firststep.Too often architectures amesigned and block diagranase drawn
without taking this intoaccount.The result isendless series of meetings, memoranda,
misunderstandings, and missed deadlines.

11.3.2 Modularity

A spacecrafsoftwarearchitectureshould suppormodularity and reusability ldeally, the
architecture should support full plug-and-play capability, where epiecg ofhardware is
delivered as a package willl the softwareneeded taun it. To caricature thevision
somewhat, every piece of hardware comes with a floppy disk. c¥lect all thesoftware

on thedisks, throwthem into a magic blackox, and out comes aompleteset of
spacecraft software ready to run. This scenario raises three questions: 1) what needs to be
on thefloppy disk in order tanakethis work, 2) what is insidethe "blackbox™ and 3)

what priceare we willing to pay in terms afp-front effort, increasedisk, and reduced
efficiency in order to realize this vision?

98

X2000 Software Architecture Definition 5/12/97

To answerthesequestions, considehe following scenario. Wehave a spacecrathat
includes a camera. Theamerahas two connections the rest ofthe spacecraft, a 1553
busclientand a power connectionThe 1553 port isconnected to a non-redunddrfg53

bus, and the power terminal is connected to a non-redundant power distribution unit, which
is also connected to the 1553 bus. There is also a CPU and a 1553 bus controller in a VME
cage. Each of these components comes with its own plug-and-play floppy disk.

Now considerthe process of turning othe camergurely fromthe point ofview of the
hardware. The CPU sends @ommand ovethe VME bus tothe 1554 bus controller,
which sends @ommand to théDU, which changeshe state of awitch, which causes
electrical power to be supplied to the camera.

There argdwo important points to note about ttesenario. Firstthe camerghardware)

does not participate at all in this process. Turning orcdingera is &ide-effect of a state-
change in the PDU, which is a side-effect of a command sent over the 1553 bus, which is a
side-effect of a command sent oviee VME bus, which is a side-effect of eomputation
performed on theCPU. Thus, if we supposthat the camera'fioppy disk contains
executable code we are forced to conclidéthis code alone is not enough to turn the
cameraon. Either the camera codes tointeractwith code elsewhere ithe system, or

there must be something else on the disk.

Let us examine thérst possibility, that thedisk contains dcamerasoftwareobject” that
negotiates with other software objectghe system to turn oithe physicacamera. This
collaborate-object model is vepppular,but not often fleshed out beyond a vague block
diagram whose link semantics are not vesfined. Inthe absence of a concrgisposal
from its advocates, | will set up a straw man for what such a negotiation might look like:

1) Mission manager to camera: turn yourself on

2) Camera to power manager: what is my power port connected to?
3) Power manager to camera: PDUL, port A

4) Camera to PDUL: Please turn on the power at port A

5) PDUL to data bus manager: which lwositroller is master to m$553 bus
connection?

6) Data bus manager: 1553 bus controller 1

7) PDU1 to 1553 busontroller 1: Pleasesend the PDU1_PORTA_ON
command

8) 1553 bus controller 1 to VME manager: what is my VME I/O address?

9) VME manager: 0x1234

[1553 bus controller object twiddles bits at 0x1234 which sets in motion the
chain of events that turns on the camera.]

There are sever#hings tonotice abouthis dialog. First, it is pretty complicated. Nine
message transactions were required. Somghede transactions could be done once at
systeminitialization and cached, but igeneral they canndie. If there are redundant
PDU's, for example, then the camera has to ask which one to use every single time.

Second, this is an absolutely trivial example. It is an open-loop change of a single binary

state with no fault management, nredundancy, na@onflict detection oresolution, no
constraint checking or recovery.

99

X2000 Software Architecture Definition 5/12/97

Third, there is this hypotheticdpower managerbbject that isnot associated with any
particular piece of hardwarelt is thus presumably part of the "black box" infrastructure of
the plug-and-play architecture, and dssigned differently fromthe hardware-specific
objects. This distinction is evident on some block-diagrams of negotiating olgegtdy
havingdramatically more lines comingut of them) but areotherwise undistinguished.
This leads tdhe impression that athese objects have a homogenestiscture, which
would appear unwarranted at best, and a serious mistake at worst.

It is incumbentuponadvocates of the negotiating-object model of modularity to provide
detailed descriptions of exactly how the negotiatioagpen. What are the datstructures
that arepassed around™Mow are failures handledHow are decisions modulated by the
global mission state? What is the API (abstract programmer interface)?

This brings us to the second possibilityat there issomething on theamerafloppy disk
besides executable code. One possibility is that the floppy disk includes object thmatdels
are interpreted by a run-time engif@ set of engines) such dse New Millennium
Remote Agent, or similasystem. Thisapproach hashe advantage of having been
implemented and demonstrated already, and so there is a very detailed (and lorigatstory
can be told about exactlyow thisoptionworks. This story is beyondhe scope of this
document, and there is no doubt room for improvement. For exatigleurrent Remote
Agent design usethree different and redundampresentations. A unified representation
would be very useful.

Finally, we observe that the fundamental problem in designing a plug-andrphaiecture
for spacecraft is the many different ways in which spacecraft subsyséemsteract. The
list of interaction mechanisnfeund elsewhere in thidocument may be aseful starting
point for the design of a unified representatiéor hardware objects. For example, the
camera floppy disk might contain information such as the following:

* | am a camera, which is a powered-bus-device

 When my power-state state vector component has the value on | draw seven watts
of power.

* My bus-interface is of type 1553-bus-client

* | have an additional state-vectelement called picture-staterhich can take on the
values off, warming-up, ready, and taking-picture.

* Whenever my power-state is off, my picture-state is also off.

* When my power-state transitionsda, my picture-state becomes warming-up for
five minutes, and then becomes ready.

* When my picture-state is ready | caspond tahe following additional method:
take-picture, which has the following effects...

This object model can be consideredpaogram” for a'black box" similar to the remote
agent that haplanning, execution, anfult detection and recovery capabilities built in as
infrastructure.

'This is because it must be able to inform any piece of hardware of its power port

the design of the power distribution system. In fact, the straw man example makes
assumption that all power ports are connected to one or more PDU's with designate
switched. To really get this right would make the example even more complex than

100

X2000 Software Architecture Definition 5/12/97

11.4 Uplink System Design / Command & Control
Capabilities

3.1 New Command & Control Process

Rather than the traditionasingle-mission design approachihe X2000 software
architecture, uplink process, and command & coraplbilities are intended support a
series of missions characterized by development and launches spread out oveeansny
long mission flighttimes, avariety of different science payds, and aleast adecade's
worth of evolving advanced hardware and software technology.

The X2000 software desigrapproach taken to accommodatriltiple missions and
evolving technology is to assume a spacecraft avionics design and ghawed data
system common to all missions. Furthermdilight operations and other post-launch cost
considerations have lédwardthe design goal of developingraw command & control
process that is compatible with very low ops team staffing levels.

This new procesplacesless emphasis (and manpowassociated with development on
the ground of a constraint-checkednflict free, predictive-modebased timed sequence.
Rather,the X2000 uplink process desiggoal isfor a procesghat allows anon-board
"stack" of multiple, time-windowed, prioritized command macros that may be tieseat
triggered. This approach not only saWlesenormous costs afetailedsequence planning
and the development amdnning of highly accurate predictive performanceodels, it
enables command and control of on-board processes that are inherently unpredictable, such
as anomaly response (fault protection), variabledatacompressionscience opportunity
detection, and evemtelligent agent commangdeneration. S/Qoerformance efficiencies
will result from triggering commandgsing on-board actuals,ther thanground model
predicts.

An important feature of th@ew uplink process ishat it can be operated in lawer
efficiency mode by defaulting back to the @dund performance- moddbased,timed
command sequencaode. Thismode onX2000, howeverwill depend on much coarser
(e.g., lower cost) performance and resournanagement models than have traditionally
been developed and maintained by flight projects like Galileo and Cassini.

A second important feature of the new uplink process is that it provides on-board constraint
checking that is a migrated version of similar ground based consthaicks. Thigpermits

the same conflict identificatioprocess omacro calls to beun first onthe ground using
coarse model based constrathiecks,and later, orthe s/cusing s/c actualfkuns on the

s/c will allow new, event driven on-board command macro calls to originate and be entered
into the command macro stack.

The third major feature of theew uplink process is aimple priority basecdconflict
resolutionprocessthatresolves conflicts between macros by schedulivegmacro with
the highestpriority. This capability when usedoperationally byundersubscribing high
priority macros and oversubscribing lower prioritgacros, isexpected to provide
"guaranteed” events together with a higlaificient supplement of'bonus” events.
Undersubscription margins will allovor late entry of on-boardevent driven macroalls,
some of which may be high priority, and some of which will be loprerity. Likewise,

101

X2000 Software Architecture Definition 5/12/97

late, on-boardntelligent agent or'smart” planner originateanacro calls may be pre-
assigned high or low priorities based on mission experience, "trust”, and confideinae in

agent.

FIGURE 3.1 X2000 COMMAND ARCHITECTURE

GROUND SYSTEM FLIGHT SYSTEM
INTELIGENT AGENT INTELIGENT AGENT
GENERATED —— GENERATED
MACRO CALLS — MACRO CALLS
CROCALLS | UPLINK
USER
GENERATED |
MACRO CALLS ~—b CLOSED
LOOP Y
CMNDS
MACRO MACRO
MACRO
EXPANSIONS g‘/r-\/::gKOING STACKING
S/C FLIGHT RULES SIC FLIGHT RULES
& CONSTRAINTS IMMEDIATE | & CONSTRAINTS | > CONELICT
CONFLICT ACTION
IDENTIFICATION IDENTIFICATION
SIC SHARED CMNDS SIC SHARED
RESOURCE MODELS RESOURCE MODELS
EVENT- !
A DRIVEN
FAULT
PROTECTION
PRIORITY-BASED CMD RULES PRIORITY-BASED
CONFLICT CONFLICT
COMMAND PRIORITY RESOLUTION RESOLUTION
RULES
EVENT-
COMMAND COMMAND
DRIVEN GENERATION
GENERATION > | SCI & ENG
CMD RULES

_ L

'\CA’X'"CDRO REJECTED COMMAND
UPLINK < MACROS EXECUTION
REJECTED 4 "STACK" >

MACROS

LI: Eﬁg);égﬁggc’\gﬁscgg I—ﬁgll_-iLgRIORITY MACROS
+« OVERSUBSCRIBED LOWER PRIORITY MACROS

Figure 3.1 is a block diagram of a flight agcbundcommand architecture thahjoys the
features mentioned above. User generated command macro calls can be input to the system,
run through the ground conflict id and resolution processgahdplinked as an integrated
set of macro calls, or the ground process can be bypasseadaanal calls can be uplinked
directly to the onboard macro "stack”. The on-boardconflict id and resolutiorprocess
acceptanputs fromthe macro stack as well agputs fromthe "boxes" abovejncluding
selected on-board closed loop processes, uplinked "real-time" immediate action commands,
fault protectioncommands, aneévent driven science and engineercgnmandsAll of
these commandourceshave pre-agreed priority assignmentset@ble simple priority-
basedconflict resolution.Macro calls thaspecify largetime windows will have a better
chance of getting executed than macros that must be executed at one specified time. Finally,
Figure 3.1 showshat macro calls can originateom intelligent agentsoftware located
either on the ground or in the spacecraft.

102

X2000 Software Architecture Definition 5/12/97

FIGURE 3.2 TRADITIONAL COMMAND ARCHITECTURE

GROUND SYSTEM FLIGHT SYSTEM
USER GENERATED
MACRO CALLS — ClostD
LOOP o
CMNDS
MACRO ‘
EXPANSIONS o T
CMD INTEGRATION ICMNDS
S/C FLIGHT RULES EVENT-
CMD MODELING
& CONSTRAINTS P DRIVEN
»| FAULT —
PROTECTION
CMNDS
COMMAND
CMD SCHEDULING EXECUTION
S/C PERFORMANCE ENT-
MODELS \ oNZu
>
CONFLICT S ENG
IDENTIFICATION N
CONFLICT
S/C SHARED RESOLUTION
RESOURCE
MODELS
SEQ OPTIMIZATION SINGLE,
TIMED,
SEQ GENERATION CONSTRAINT CHECKED, —
SEQUENCE | CONFLICT FREE,
OPTIMIZED,
OPTIMIZATION SEQ REVIEW / UPLINK PREDICTIVE-MODEL BASED,
CRITERIA APPROVAL COMMAND SEQUENCE
COORDINATED COMMAND
GROUND EXECUTION
EVENT VALIDATION

SCHEDULE

Figure 3.2 is ablock diagram of the traditional commarnutocess architecture for
comparison with the new design. One of the obvious differendée igct that there is no
on-board constrainthecking and conflict resolutioprocess equivalent tthe ground
process.The traditionalground procesplaces much more emphasis (and $) dealing with
flight rules andconstraints,precise / detailed predictive/c performancenodels, and
sequence optimization. The product uplinked is a single, timed, constraint chemkiéct,
free, optimized,predictive-model basedommandsequence. It isincompatible with
unpredicted event¢such asfault recovery commands) and typically “crashes” if an
unpredicted evenbccurs. For this reason it doesrdtlow event driven science and
engineering events (tHeox with the “X” over it). It doesn’taccommodate late command
entry from on-board intelligent agents.

103

X2000 Software Architecture Definition 5/12/97

TRADITIONAL UPLINK PROCESS X2000 UPLINK PROCESS
PRODUCT IS SINGLE, TIMED, CONSTRAINT CHECKED, PRODUCT IS, TIME-WINDOWED, SENSOR / EVENT
CONFLICT FREE, OPTIMIZED, COMMAND SEQUENCE DRIVEN, PRIORITIZED, STACK OF COMMAND MACROS
PREDICTIVE MODEL VERIFICATION & USERS (INCLUDING INTELLIGENT
CALIBRATION REPLACED WITH UNDERSTANDING AGENTS) SUBMIT MACRO CALLS,
"BUMPED" COMMANDS & REPRIORITIZING / PRIORITIZED WITH ALLOWED
RESUBMITTING J OVERSUBSCRIPTION

~

MORE ON-BOARD CLOSED
LOOP CMDS, EVENT / SENSOR

SEQ COMMAND
PERFORM- REQUEST
SUPPORT

REVIEW PRIORITIZED,
EASY TO CHANGE MACRO
STACK INSTEAD OF ZERO
DEFECT, HISTORY
DEPENDENT, OPTIMUM

SEQ
PERFORM-
ANCE

ANALYSIS

DRIVEN MACROS; FEWER
ABSOLUTE TIME,
PERFORMANCE MODEL
DRIVEN CMDS, COARSER
PERFORMANCE MODELS

/

REVIEW &
APPROVAL

PREDICTIVE
PERFORMANCE
MODELING

PREDICTIVE
PERFORMANCE
MODELING

SEQ RECOVERY
FROM EVENT
DRIVEN FAULTS

SEQRECOVERY
FROM EVENT
RIVEN

AULTS

/

FAULTS ARE ACCOMODATED
WITHOUT LOSING SEQ
(EVENT DRIVEN FAULT
IS TREATED JUST
LIKE EVENT
DRIVEN MACRO

CONSTRAINT
CHECKING

SEQ /
OPTIMIZATION EASYTOADDOR

REMOVE MACRO z;fgwuz;\
FROM STACK FEWER FLIGHT RULES &
CONSTRAINTS, MORE MARGINS,

PRIORITIZED MACROS, / ALLOWED OVERSUBSCRIPTION,
NOT OPTIMIZED SEQ, ON BOARD ACTUAL CONSTRAINT
UNDERSUBSCRIBED PRIORITY 1 CHECKING, UPLINK NEED NOT BE
MACROS, OVERSUBSCRIBED DEFECT FREE.
LOWER PRIORITY MACROS,
EASE OF LATE CHANGES

FIGURE 3.3 COMPARISON OF TRADITIONAL VS. X2000 UPLINK ACTIVITY EFFORTS

Figure 3.3 is apie chart ofhow uplink resourcesare spent operatinghe traditional
sequence uplink process ahdw these operationalesourcesare reduced by the new
X2000 processThe new proceswill offer major cost reductions associated with the
development, calibration, and repeatethning of predictive performancenodels. For
example, instead afsing adetailed performance model to predsteéw time and settling
time, on-board sensa@ctuals will trigger the nextvent. Instead of a detailedarefully
calibrated thrust-timess. delta V model, recalibratedfor changing s/c mass during the
mission as propellantnass is depleted, aaccelerometer will trigger théhruster-off
command. Figure 3.&xplains foreach majoruplink task, howthe new command &
control design will enable significant operations cost savings.

Constraint checking will be simplifiedrit, because th&2000 s/c will be designed for
operability with minimum flight rules to constrain operations and with adequate
performance marginsuchthat the interaction between commamdcros competing for
shared resources will be minimized. Second, constraint checking effort will be reduced due
to the new uplink processince this permits oversubscription and doesn’t require creation
of a conflict freesequence. Finallygonstraint checking on thground can be performed

with “looser” tolerences andess precise models, since constraint checks will be
reperformed at &ter time onboardthe s/cusing parameteractuals,rather thanground

model predicts.

Sequence optimization isliminated in thenew uplink process anteplaced instead by
simpler macro prioritization.

104

X2000 Software Architecture Definition 5/12/97

Late changes to an optimized, confliftee, history dependentimed sequence are
complicated to implementor instanceadding or removing a slew ithe middle of a
sequence will causall subsequent slewime predicts to change along withe times of
subsequent eventand the sequence will have to teelone. Inthe new X2000process,
adding or removing a slew is justraatter of adding or removing a macro from the
prioritized stack.

The sameprocessabove that accommodateser initiated changes,will accommodate
changesnitiated by on-board faults andailure recoverymacros. Thughe new X2000
commandprocesswill continue to execute its prioritized stack of macros followiagit
recovery,while in mostcases,the traditional,timed, history dependent sequence will
abort, fall back to some safe state, and wait for ground reconstruetitimodeling, and
sequence redesign, before it can resume.

Instead of reviewing a sequence about to be uploaded to teaifyt is optimum and

conflict free, the new uplink process simply looks pgtiorities and probably margins
associated with the successive release of shared resources (e.g., 50% of predicted available
memory to priority 1 macros, 30% to priority 2, 30% to priority 3, etc.)

Performance analysis may be the one uplink task area that doesigtvgdthe piewedge

in figure 3.3 stays big)although it substantially changes character. Instead of analyzing
sequence execution to see if s/c performance acheils/c performance predicts and for
data to calibrateand verify predictivenodels,the X2000 commandprocesswill involve
analyzing command actuals to sgkich commands gog¢xecuted andvhich onesdidn’t

and try to understandvhy and decide whether to reprioritize / resubmit “bumped”
commands.

TABLE 3.1: X2000 COMMAND ARCHITECTURE: 10 MOST IMPORTANT
1. TRIGGER ENGINEERING & SCIENCE COMMAND MACROS BASED ON ON-BOARD EVENTS / SENSOR
STATES RATHER THAN PREDICTIVE PERFORMANCE MODELS.
2. FLY ON-BOARD CONSTRAINT CHECKING AND CONFLICT RESOLUTION SW SIMILAR TO GROUND SYSTEM.
3. USE SIMPLE COMMAND PRIORITY SCHEME FOR CONFLICT RESOLUTION.

4. UNDERSUBSCRIBE HIGH PRIORITY COMMANDS (GUARENTEED) AND OVERSUBSCRIBE
PRIORITY COMMANDS (BONUS).

5. DESIGN S/C FOR OPERABILITY WITH MINIMUM NUMBER OF FLIGHT RULES & CONSTRAINTS.
6. ACCOMODATE FAULTS AND UNPREDICTABLE EVENTS WITHOUT LOSING “SEQUENCE” (MACRO STACK).

7. PROVIDE A DUAL FLIGHT-GROUND COMMAND PROCESS ARCHITECTURE SO FUNCTIONS
" MIGRATE EASILY.

8. PROVIDE FOR LESS EFFICIENT, GROUND BASED, CONFLICT FREE, TIMED SEQUENCE COMMAND MODE
AS AFALLBACK CAPABILITY.

9. EXPLOIT BOTH GROUND AND FLIGHT INTELLIGENT AGENTS AS SOURCE OF PRIORITIZED
COMMAND MACROS.

10. MINIMIZE REQUIREMENTS FOR COORDINATED FLIGHT & GROUND EVENTS (BECAUSE MANY S/C ACTIONS
WILL BE UNPREDICTED).

105

X2000 Software Architecture Definition 5/12/97

A summary of the principles of theew X2000command and contrgdrocess described
above is provided ifable3.1. This liststhe top 10steps to béaken to move from the
traditional ground sequencing process to the new X2000 command and control design.

106

X2000 Software Architecture Definition 5/12/97

11.5 Information Systems Architecture

“A Database is a treaty that governs the behavior of Users”

Dr. Paul Gorham

University of S. Wales

1.0 Introduction

This section ofthe X2000 Unified Flight Ground Architecture Documentddress the
Information System Architecture, specifically as it relates to X2000 databases<200e
databas@resents new opportunities addallengedor information capture and retrieval.
The ultimate goal of this architecture is to reduce the cost of:

» applications development

* ad-hoc query processing & data retrieval

» pre-planned (server push) data transfers

» replication of distributed data

» roll-up of distributed information necessary for centralized decision making.

The two fundamental systems architectural principles will assuceatealized information
basethat is distributedand object-oriented irstructure. Where applicablejndustry

standards will be used as a basis for some decisions with respect to implementation.
2.0 Information Architecture

Timely, correct, and properly formatted information is necessarimniiefy decisions at all

phases othe missionlife cycle. Thisarchitecture will attempt t@over themission life
cycle as well as provide data to subsequent X2000 engineering efforts.

107

X2000 Software Architecture Definition 5/12/97

Replicated
X2000 Bus Planning, Analysis and Performance Data Engineering —— X2000 CogE Site
Parameters
Mission Planning Dat Replicated
ission Planning Data Engineering Remote X2000
Data Engineering Site
Project Planning
Data
(DNP Parameters Replicated _
Data , (PDB)) Operational Data Science Remote_ Science
Data Site
Replicated .
—— Operations Remote Operationa | |
Data Site

Figure 1 - High Level Information Architecture

Figure 1 illustrates the highelgvel of X2000 nformation architecture. Information is
decomposed into 4 aretwat reflect overalinission orproject state. Applicable data is
replicated from the centralized repository to remote sites via database replication operations.

Project Design information is very higkvel informationabout theactual Ice &Fire
mission and vehicle configuration in question. This structure is maintained in a Parameters
Database that will be provided by the DNP organization

X2000 BusEngineeringData contains data relevant to the gener2000 hardware
configuration and performance. The ultimate goal of this information is to provide input for
X2000 Bus processmprovement and provide planningata for subsequent X2000
missions.

The MissionPlanning structure will be a repositdigr sub-system engineers populate
data structures with relevant configuration and calibration information about their respective
sub-systems’ sensors and effectors.

The Operational Data repository will contain data that sulpport bottreal ime, non-real
time, and science payload operations of the X2000 mission. It will also contain a replicated
image of the spacecraft flight database.

Project cost reductions will be achieved ¢sntralizing allX2000/Ice & Fire databases.

The cost savingsvill be made by centralized Database Administrastaff and functions

(e.g. Security, Configuration Management, back-up, Recovery, and maintectiities)

can be located in single facility. This will eliminate redundant database administration
activities at distributed sites. X2000 will take maximum advantage of distributed database

" The current DNP Parameters Database (PDB) is a relational structure which provid
design tools in different phases of design. This database supports data archiving

108

X2000 Software Architecture Definition 5/12/97

operations. Specificallythe centrally maintained2000 data will be replicated to remote
sites and remotdataproducts originating frommemote dies will be rolled up into the
central X2000/Ice & Fire database.

2.0.1 Mission Planning and Engineering Base

This information structure will be defined ke RDL syntax. RDL is anemerging
industry standard syntax used five definition of the Project Command amhdlemetry
Database. The basic idea for X2000 willthe specification derivesoth information and
classesto manipulate themission information. The RDL syntax can support both
TeleCommand and Telemetry specifications set forth by the Consultative Committee Space
Data Systems (CCSDS).The following is anexample of RDLsyntax to describe the
CCSDS Header of a Telemetry Packet:

PACKET P002 APID=02, DESC="Pri S/C Processor Fast Normal Mode Packet", STALE=148
RECORD CCSDS_Header APPEND,DESC="CCSDS Header"
UNION HDR1 DESC="CCSDS Header 1st 16 bits"
ui pvno mask=%b1110000000000000, Ishift=-d&sc="Packe¥Version Num.

Bits 0 - 2"
ui pckt mask=%hb0001000000000000, Ishift=-1@esc="Packet Type
Bit 3"
ui shdf mask=%b0000100000000000, Ishift=-1@lesc="SecondarlieaderFlag
Bit 4"
ui id mask=%b0000011111111111, Ishift= @esc="Application ID
Bits 5 - 15"
END
UNION HDR2 DESC="CCSDS Header 2nd 16 bits"
ui segf mask=%b1100000000000000, Ishift=-desc="SegmentFlags
Bits 0 - 1"
ui scnt mask=%b0011111111111111, Ishift=d€&sc="Source SequenEount
Bits 2 - 15"
END
ul plen desc="Packet Length"
MET stime desc="Secondary Header Time (64 bits)"
END

The above examplghowsthe flexibility of thegrammar. It is envisionethe language
would constitute thébasis of parserthatwould read the MissiorPlanning Command &
Telemetry database and would automatically generate bothnmmealommandingdatabase,
telemetrydatabase, anthe classes/objecthat would manipulate these informatidoases
respectively. The following is a high level architecture of theMission Planning
Information Architecture.

109

X2000 Software Architecture Definition 5/12/97

Specifications
GUI - Drag-Drop 0\‘ WWW Interface
Interface for
Command and

Telemet .
Smewry Update Transactions
Specification V\D RDL Syntax
Generator *
Read Transactions
\0 RDL Based
= - Command &
om[géan Telemetry Database
Command xS Telemetry
Database DB
Classes CodeGenerator | 7] Telemetry
Database
Classes

Figure 2- Mission Planning Information Architecture

The specification phase would involve the population of the Project Commadiete&etry
Database. The human-machine interfacelld extend an easy tase drag-droginterface

for enumeration of spacecraft hardwaaetuators, sensors, derived items, etc. by
engineers, scientists, and mission planners. Specific information fields wolddhdled

by pop-up Property Pages witbntext sensitive help to aid the operator in creation of a
complete specification. The back-end of the interfacetaklt the graphic specification of

the command or telemetry poiahd generate theDL syntax necessary fgopulation of

the database. The databas&ould extend interfacesor applications to query existing
specifications. This interface would be implemented through application, World Wide Web
(WWW) applets, and ad-hoc interfaces.

To the greatest extent possible, the systems and sygterasated from specifications will

be datadriven in nature. The concept of datdriven means there is sonmbject that
contains information aboutow to processtherobjects.The algorithm/program becomes
invariant—only the data is updated. Software maintenance becomes a database update..

All applications thaticcessX2000 nformation will be created tsupportthe Unicode

standard and designed so applicatiesources (Menus, Dialogs, Strings, etc.cah be

placed in “resource-only” dynamic link libraries (DLL). This wkilitate deployment of

the applications into the languageair International Science & Engineerifartners and
Users. (Applications will be capable of being “hot-switchedith indigenous language
prompts, menus, and dialogs.)

The back end of the Mission Planning System shall suppoaiLtioenatic generation of the
real time command & telemetry databases.

2.0.2 X2000 Bus Planning, Analysis and Performance Base

110

X2000 Software Architecture Definition 5/12/97

The X2000 PlanningAnalysis and Performance information base wmitially become a
repository forplanned performance datar the X2000 bus. Ultimately, this repository
will be populated withreal timeperformance datand will maintain metricsand analysis
data on planned versus operational performance of the X2000 bus. It is envikairibe
datafrom this system will constituté¢he information content of the feedbaltdop for

mission designers of subsequent X2000 missioftse substance of thidata can include
(but is not limited to):

e X2000 system, sub-system, sensor, actuator processing abilities and limitations

« Calibration Data(Pre-Launch calibratioplanning, Post.aunch updates based on
performance)

» Consumable Data (Propellants, Battery Cells, etc.) Planned and actual data
» Engineering Data(raw and summarized)

It is expected that this data will be utilizémt planning subseque2000 missions. This
database can be thought of agpracessimprovementrepository. The goal of this
information is to improve the quality of future X2000 missions and reduce their cost.

2.0.3 Operational Mission Base

This aspect of the X2000 information base is intended to maintain real time operdaianal
for both X2000 bussystems, C&T orbital/tracking/navigation/attitude, engineering and
science payload. The Commanding andTelemetry databases are created from
specifications in the Mission Planning Phase.

. Orbital, Tracking
Command Flight Database PR
OLTP Database Replication MM‘
& Attitude
Interface
Database
Eelteiwet(Payload Database
Latabase Replication Payload
Database
Engineering
Database
Applications OO Middleware
Software (CORBA, DCOM) / \
WWWwW
Interface

Figure 3 - Operational Database Architecture

The focus of thisdocument is not to desigine scheméor theserepositories. The
operational data base will be contained within an OODBMS. Access to the database will be
madethrough anObject Orientedniddleware (CORBA or DCOM). The actuaquests

from these interfaces will be handled be Transad®mtessing (TP) monitor. This class

111

X2000 Software Architecture Definition 5/12/97

of software is beingisedbecause thelltimate volume of datdor 4 missionswill be
sufficient to crash a system without a transaction monitor.

3.0 Flight Database

The vision for the flight database is to have an OO client/server architecture.

O LU

o e f o | [o o o |

Command & Cdntrol Processor Database Serper Processor

@ High Speed Bus)

OO Flight
Database

Spacecraft
| e e s [s [s Data
Payload Processor Recorder

Figure 4 - Flight Database Configuration

All applications will retrieve & post their information to the centralidedabase. Fdime

critical high performance applications, portions of the database could be replicated to other

processors.The databaswould maintain a non-volatileopy within the SpacecrafData
Recorder. Applications in the flightsystem will accesdata bysending messages to the
database server. This messaging paradigm will follow the Law of Demeter.

112

X2000 Software Architecture Definition 5/12/97

11.6 Scaleable & Flexible Sequence

11.6.1 Introduction:

Supporting future JPL missions has become a very big challenge. These days, for instance,
the pressure’s on having a visionary use of technologipg adaptable to a range of S/C

and missions,being able toshortenthe development time, and having a smaller flight
teant. Event driven sequencing, priority based sequencing, sequence over-subscription,
and on-board sequence restdter S/C fault recovery are another added challenges to be
mef. Yet, important these requiremerase, they can’'t cost toanuch. Suchexpanded
requirements to S/C, mission operations, Higtit ground S/Wdevelopment have clearly
become the central success to a JPL faster, better and cheaper mission.

These new considerations have begun to dhed@MOD MP&A'’s decision abouhow to
meet current and futur#PL missions’ objectived he search is offior the solutionsthat
offer: unified flightground S/W architecturéacremental implementationand an end to
traditional sequenceobsolescence Scaleable and Flexible Sequencing is a
recommended sequence scheme to meet the about-mentioned needs.

! X2000 S/W architecture programmatiequirement, presentationandout, 5/27/97,
Robert Barry

Z |ce & Fire Command Architecture: The Goal, 4/23/97, John Carraway

11.6.2 Incremental Implementations:
It's pretty hard to re-engineer sequence constructs ftioen traditional timebased

sequencing to a fully automatexh-board sequencing approach. Therefeftgctive re-
engineering solutions need to enable gradual, piece-meal adoption.

113

X2000 Software Architecture Definition 5/12/97

11.6.3 Phase 1: Time Based Sequendgsee fig. 1 time based sequence
example)
Block
Relative Time
Command
fork Relative Time
Master Sequence Command
Absolute Time [e allye Tine
Macro comman Leomand
Absolute Time Relauve Time
Macro comman End of Block Block
Absolute Time Relative Time
Macro comman fork Command
Absolute Time Relative Time
Macro comman Command
Absolute Time Relative Time
Macro commandg Command
Absolute Time Relative Time
Macro comman End of Block
Absolute Time fork Cyclic
Macro commang! - Relative Time
End of Sequencd # of repetitions
cyclic duration
Command
Relative Time
.] Command
Fig. 1 Time Based Sequence Exampl@syp back unti finished
End of cyclic

Sequence Components
Sequences:

This construct ighe traditionalsequence(seefig. 1) used on Voyager, GaliledJGS,
etc. A series of commandsmacro commands (tmitiate blocks) is uplinked to the
spacecraft at a planned window to execute over the next few days, weeks, or Menmyths.
long sequenceare calledbackground sequencesind aredesigned to work irconcert
with other shorter 'overlay sequences’ (e.g., mini-sequences).

Blocks:
Candidate activitiedor blocks are repetitive and might include scieno@aintenance

activities, engineering calibrations, and/or engineenrantenance activitieBlocks can
be calledfrom the stored sequenamacrocommandsParameters may hgassed with the

114

X2000 Software Architecture Definition 5/12/97

call to theblock for use during executionThe MGSO 'brick’ concept and Spacecraft
Expanded Blocks (SEB) belong to this class of sequence construct.

Mini-sequences:

Mini-sequences are similar wrdinary sequencesxcept that they are generafiyiorter.

TCMs will be implemented using the mini-sequestategy. For example, a window will

be designed in a stored sequetied encompasses an execution period a TCM. The
sequence will be uploaded without thEM and begin executiolhe TCM (which may

require a late parameter update) will then be designed on a separate schedule and uplinked
to execute in parallel with the stored sequence.

Cyclics:

Cyclics areused to sequenagepetitive activities that are defined as a repeatable command

set once in a sequence and then executed a number of times (Voyager cyclics are the best
historical example of the construct beipigpposed in this document). As a resultyalic

canonly becalledwhile the sequence containing tbylic definition isexecuting.Cyclic
parameters are the number of repetitions and the amount of time between repetitions.

Planning & Sequence Ground S/Wfig. 2 MP&A-SEQ S/W Architecture)

Users

Y

Web Server

Fig. 2 MP&A-SEQ S/W Architecture

S/C clock data
Spice data
DSN data

A

requests

SST

pef \ssf

SEG STS

requestg
1

requests

requests V4 APGEN

(with auto scheduling) sasf, tol

slew time ,

length of the obs.,
conflict free window
info.

sasf,

lef, cmd_dsn
'sasf, pef \Servid

E requests CMD

SEQ_POINTER SEQ_REVIEW

cmd_dsn

Legends:

S/C or S'imulator

Eoic oy -0~
interface interface nore ity future feature

Science Planning System

SEQ_POINTER:

115

X2000 Software Architecture Definition 5/12/97

Allow user to desigmemotesensingscience observatiorduring a flight operations: i) to
reconnoiter candidate remote sensagervationsii) to design and refineemotesensing
observations, andi) to update observation targeting basegon improvedephemeris
knowledge.

Science Opportunity Analysis Tool:

SOA will identify and selectoptimal science opportuies to support bothrajectory
selection and sequence developm&®A will identify time windows during which a
given set of geometric conditiokat define a sciencepportunity are met. SOA will
analyze a fixedime window and givesthe values of geometric parameteeysus time.
Finally, SOA will animate (computer graphic visual) moving representations of the target.

Mission Planning & Sequencing System
APGEN:

APGEN is a resources -basederactive activity plan generatéor mission planning &
sequencing, which allows automatic scheduling and modeling of activities / resources.

SST:

SST provides aapability to crate, merge, edit, printexpand and check sequence
requests. First, SST will validate sequence request parameter values with respggteo its
and ranges, as well as ttee constraints governing relations between different parameters.
Second, the program will also expand the sequence redgpiestse or more loweevels
sequence activities, notes or commands. Finally, 88 Verify sequencesire consistent

with the flight andmission rulesfinite S/C and groundesources,. T@accomplish these

roles, SST will update and maintain models of both S/C and ground states in order to check
whether allocated constraints are violated by a candidate sequence.

STS:

SST is responsible for the translation of a Spacecraft Sequetieefanm of a Spacecraft
Sequence File (SSF) into a Command Packet(EiRF) forradiation to thespacecraft. A
binary UNIX file may be formatted into &PF for transmission tthe spacecraft. The
primary program of the STS is the Spacecraft Language Interpreter and C8tdddT)
which is based on the prototype program Seqgtran_2000..

SEQ_Review:

SEQ_Review is similar to a text editor that lets tiser open amrbitrary text file for
display. Unlike a text editor, SEQ Review can be told tdetect certaintypes offile
formats. When it finds that fle conforms to dormat it "knows", SEQ_Review analyzes
the file in considerable detail. This allows timer to modifythe appearance of the file (e.
g., remove unwanted information, re-formdata intocolumns,add derived quantities
computed frondata in the file) much more easily thanth a text editor. SEQ_ Review
learns about file formats through ASCII files called "Format Descrip(&i®). These files
can be edited and modified hysersand adapters, providinGEQ_Review withgreat
flexibility.

116

X2000 Software Architecture Definition 5/12/97

11.6.4 Phase 2: Close Loop Conditional Sequen¢see fig. 3 time based
conditional sequence example)

Master Sequence

Absolute Time

Call event bloc \ Event Sequence Block Block A
Absolute Time . .

while not time out, do{}
Macro comman [f SIC State(s) is true Command
Absolute Time Relative Time Relative Time
Macro comman Command Command
Absolute Time exit Relative Time
Macro comman end if Command
Absolute Time end_do_loop Relative Time
Macro commang f enough time to finish block A End of Block
Absolute Time Macro Command
Macro commang end if
Absolute Time ait

Macro commanfl
End of Sequen

[¢]

Fig. 3 Close Loop Conditional Sequence Example

This addition layer allowshe traditional TimeBased Sequence to perform closed loop
Sequence. A series of commandseacro commands (timitiate sequence blocks @avent

blocks) is uplinked tdhe spacecraft at a plannedndow to executeover the next few

days, weeks, or months. Aevent block will beinitiate at anabsolute time, but the
commands will be executed depends upon the conditions of a selected sett&&). The
conditions of the states are the actual S/C states during sequence execution time, and it does
not require any ground interactions.

Planning & Sequence Ground S/W

In addition to the MP&A-SEQ S/W (see fig. 2) from phase lexernal file is needed to
set the S/C states conditions.

117

X2000 Software Architecture Definition 5/12/97

11.6.5 Phase 3: Event Driven Sequencésee fig. 4 event driven sequence
example)
Flight /Ground Flight / Ground Flight

Event Driven
Sequgnce Sequence Sequence
Planning & Events Scheduler Events Execution
Modeling
*Check resouxce
allocations
Absolute Event- Event-
*Resolve time Time Driven Driven
conflicts Sequence Block Block
eConstraint
check in terms

of activities /
commands

*Check priority

Fig. 4 Event Driven Sequence

The unified flight ground S/W architecture plays an important role inptiigcularphase,
Sequence planning & modeling S/W and Event driven sequence scheduler will be the
identical S/W used both on the ground and on-board the S/C.

Both the absolute time sequence and event driven sequdrioeksare developed on the
ground bythe sequence planning &odeling, andevent driven scheduler tools. The
sequence planning & modeling S/W will schedule the abstihagsequencen.r.t. the
sequence activities’ priority, armbnstraint check botthe absolutéime and event driven
sequenceThe event driven scheduler will model t84C states foithe event driven
sequences / blocks. After the sequences’ uplink, the absolute sequence will be executed as
time expired, whereas the event driven blocks are triggered by the elected S/C states via the
on-board event driven scheduler. Prior to the executidgheoévent driverblocks, the on-

board sequence planning & modeling S/W wihleck theS/C resource allocationsheck

priority, resolve anytime conflicts with the overall sequence, and performsequence
constraint checking.

118

X2000 Software Architecture Definition 5/12/97

11.7

Development Environment

1.0 Introduction

This section othe softwarearchitecture documemiddresseshe configuration, facilities,
and tools necessary fatevelopment of theXx2000 Unified Flight Ground software
systems. The highest level guiding paradigms are:

1. Create a repeatable process
2. Approach the design & development process with a “tool based” approach

3.

Increase programmer productivity

2.4 Design

The creation of the X2000 design will be with the Unified Modeling Techniquechibiee

of what modelprojections'one createbas a profoundhfluenceupon how aproblem is

approached and how a solution is shaped. Abstradhieriocus onrelevant details while
ignoring others, is a key to learning and communicating. Because of this:

Every complex system is best approached through a small set of nearly independent
views of a model; no single view is sufficient.

Every model can be expressed at different levels of fidelity.
The best models are connected to reality.

In terms of the views of a model, the UML defines the following graphical diagrams:

Use case diagram

Class diagram

Behavior diagrams

State diagram

Activity diagram
Sequence diagram
Collaboration diagram
Implementation diagrams
Component diagram
Deployment diagram

These diagrams provide multiple perspectives of the system under analysis or development.
The underlying model integrates these perspectiveébat@self-consistent systewwan be
analyzed and built. These diagrams, along with supporting documentagotie primary
artifacts that a modelexees,although the UML andupporting toolswill provide for a
number of derivative views.

2.0.1 Notation and Semantics History

119

X2000 Software Architecture Definition 5/12/97

The UML is an evolution from Bach, OMT, OOSE, most other object-orientatethods,

and many other sources. These various sources incorporated many diflemegrits from

many authorsincluding non-OGinfluences.The UML notation is a melding of graphical
syntax from variousources,with a number of symbolsemoved (because they were
confusing, superfluous, or little-used) and with a few new symbols added. The ideas in the
UML come from the community of ideas developed by many different people in the object-
orientedfield. The UML developers did not inventost of these ideas; their roleas to

select and integrate ideas from the best OO and computer-science prabgcgenealogy

of the notation and underlyindetailed semantics is complicated, so itliscussechere

only to provide context, not to represent precise history.

Use-case diagrams are similar in appearance to those in OOSE.

Class diagrams are a melding of OMT, Booch, class diagrams of most otmeet®aus.
Process-specific extensior{ge.g., stereotypes and therorresponding iconsgan be
defined for various diagrams to support other modeling styles.

Statechart diagrams are substantibthged orthe statecharts of Davidarel with minor
modifications. The Activity diagram, which shares much of the same underlying semantics,
is similar to thework flow diagrams developed by masgurcesncluding manypre-OO
sources.

Sequence diagrams were found iwvaaiety of OO methodsinder avariety of names
(interaction, message trace, aedent trace) andlate to pre-OOdays. Collaboration
diagrams were adapted from Booch (objdetgram), Fusionobject interactiorgraph),
and a number of other sources.

Collaborations are now first-class modeling entities, and often form the basis of patterns.

The implementation diagrams (componemtd deployment diagrams) are derived from
Booch's module and process diagrams,they arenow component-centeredgther than
module-centered and are far better interconnected.

Stereotypesire one of the extension mechanisms and extend the semanticsnodtéhe
model. User-defined icons can be associated with given steredbygasoring the UML
to specific processes.

The scope ofthe UML tools will coverthe design needs of X2000 softwadesigners.
There are several Computer Aided Software Engineering (CASE) tools and contipainies
provide consultations services for UMT that would support a quickfetaitie creation of
the X2000 software design.

3.0 X2000 Design, Development, and Operational Resources

The design and development platform will be B@sed. Initially, the Windows NT
operating systems will be used by all software designers and developers. It will also be the
target operational platform for the X2000 ground data system. The performance/cost index
betweenPC’s and UNIX workstations is significant. P(performance is roughly
equivalent to UNIX workstations. Howevehe purchase price oPC’s is significantly
lessthan UNIX workstationsand shouldconstitute a significant saving in both hardware
and system software procurements ¥2000. The Windows NT operating system
installation baseow exceeddJNIX. Windows NT hasnatured and constitutes a solid

120

X2000 Software Architecture Definition 5/12/97

development and operationaktform. Current NTarchitecture features and futyoéans
constitute significant flexibility for X2000 hardware configurations.

The embedded flight system development will be hosted on PC’s and will cross-compile to
the Power PCArchitecture(or whatever target is decidgoon bythe X2000 Hardware
ArchitectureCommittee). Flight system developers wile somencarnation of the VX
Works real time operating system (RTOS) developed by Wind River SystemsRTDS
supports the requirements for single and distributed flight software configurations.

3.0.1Languages

The X2000 language philosophy will be the “right tool for the joBdwever,some high-
level guidelines will be applied to language selection for ground data system development:

* It should be capable of persistence operations with an OODBMS
» It should have bindings to an interface or object definition language (IDL or ODL)

Flight system development, language selection should be predicated upon:

* Availability of supporting “run-time” system

» Ability to process real-time deadlines

» Ability to interface with languages capable of supporting real-time events if it is not
* capable on it's own (e.g. C++/Assembly Language)

» Supported language of VxWorks RTOS

» Preferably, Object Oriented in Nature.

3.0.3Databases

X2000 will make exclusive use of Object Database Technology. The whole system design,
development,

and test strategies a@bject Oriented imature. Therefore it logicallyfollows that the
persistence mechanisgmould bepredicatedupon the aforementioned. Usingables to
store objects is like driving your car home then disassembling it to put it ingathge. It
can be assembled again in therning,but one eventuallasks whether this ithe most
effective way to park a car.

3.0.4 Frameworks
To achieve rapid development aagigressive delivery schedulies X2000 systems, the
prevailing paradigm in this aspect of system development is, the cheapest line of code is the

line of code you don’t have to write. Frameworks within X2000 will be classified into two
areas:

* Desktop
* Middleware

The elements of a desktop framework are as illustrated:

121

X2000 Software Architecture Definition 5/12/97

ComPONND
Documen
LSER
DESKTOP | NTERFA
(2D &4£D)

\

APHICS

Figure 5 - Desktop Framework Mind-Mapping Diagram

RAMEWORKS

Desktop frameworks should both increase X2000 programmer productivity and change the
way X2000 visual applications are developed. The result is a superior erappkeation
interface at a lower cost.

The elements of a middleware framework are as illustrated:

o).
\
OBJECT

AMAGEMENT

>

RAMEWORK
Com——— @

»,
-’

=

-

Figure 6 - Middleware Framework Mind-Mapping Diagram

Frameworkswill improve the ability ofX2000 developers tdealwith the complexity of
distributed development. They will help coordinate middleware elentkeatsun on

122

X2000 Software Architecture Definition 5/12/97

distributed heterogeneous platforms. Framewonk create an infrastructure of
communicatingsystem objectsWhere eaclsystemobject is defined bysing anObject
Request Broker’'s (ORB) IDL. Each system will be self describifhige best paris, the
components are certified to work together. X2000 developers simply pribedmdethat
customizes the system at a very fine grained level.

4.0 Integrated Development Environments

X2000 developerswill achieve significantly more productivity bywsing Integrated
Development environments. The environment for X2000 support must have:

Incremental Compilation and Linkage

Source Level Debugging

Help

Developer Support Tools

Make Capability

Syntax coloring

Support different editors (VI, EMACS Brief, etc..)
Support 3 party tool “plug-ins”

Support Code Browsing

10, Integrated configuration management

11. Integrated WWW access

12. Resource Editors (for creation of icons, bitmaps, etc.)

©ONOOEWNE

The key idea is to have a single tool for developer’s to learn. Third party tools must be able
to operate in this environment. Productivity will lm@ximized keepinglevelopers within
their tool focused on quality code production.

123

X2000 Software Architecture Definition 5/12/97

11.8 Java and Java Beans: A Component Architecture for
Java at JPL

Abstract

Over thepast fewyears, constructing applications by assembling re-usable software
components has emerged as highly productive and widely accepted deyelop custom
applications. Firsggenerationproducts such as Microsoft\éisual Basic, withits VBX
components and "forms-based" apgiion assemblyprocess proved to be very useful in
building a broad spectrum of applicatioWssual Basichassince been followed by other
products such as Borland®elphi which further enhancethe basic component assembly
application development model by adding more powerful data access components

and object-oriented component extension capabilitdsw, JPL developers building an
institutional software infrastructure fothe OuterPlanets project can leverage the most
modern and adaptable software development tool ever created for a componefiighased
and ground system software architecture. cdh not bestressed enouglthat the
components that are being developed, extended, and reused are in a binary incarnation.

Java and Java Beatake thecomponent software assembly paradigm torew level.
Java Beans is an architecture and platform neutral API for creatingsargldynamic Java
components. Java Beansuild on the strengths ofthe component assembly
development model established by these pioneemprgducts,and extends th@ower
further. Application developers will beable touse avariety of development tools to
assemble custom applications from fully portable JavanBeThisdocument is a brief
overview of Java and Java Beans and its functional capabilities. It discusses:

* How Java Beans extend and enhance the capabilities of the portable Java Platform
* The key elements that make up a software component model

» Highlights of Java Bean functional capabilities

* How Java Beans Extend the Java Platform

Building on Java Strengths

Java hagyuickly established itself as thadustry standardglatform for building fully
portable Internet and Corporate Intranet applets and applicafltvesJava platform
provides a number of advantages to developers for these types of applications:

* Fully portable platform: language, libraries andirtual machine pervasive
presence of thelava platform inBrowsers, and soon within Operating
Systems(soon means in terms embeddedS, Wind Rivershouldhave a Java
port FY96Q4for VXWorks) themselves, allows developerswioite application
functionality once and deploy the application broadly amde variety of OS and
hardware platforms.

 Powerful and compact environment: The Java platfornprovides developers
with the full power of an object-oriented language while eliminating the complexity,
housekeeping and heavier weight object creation and registration processes required

124

X2000 Software Architecture Definition 5/12/97

by other language and programming moeéelironments.The lightweight
runtime can be incorporated in chips for embeddedsystems, inPDAs
as well as client and serverclass PC's and workstations where Java
is becoming increasingly pervasive

* Network aware: From its inception,the Java platformhasbeen networlaware.
TCP/IP support iduilt in. Security mechanismswhich allow full protection
from applet interference with client-side data lavdt-in. Finally, the platform was
designed to allow applets and applications to be built from self-descolasges
which can be easilydownloaded tahe client-environment without the need for
heavy weight installation or registration processes. Java Beans build on all of these
strengths and extends the Java platform further.

Component Model Overview

Before describing the services provided by the Java B&Rhsit is useful tohave a high
level understanding othe key elements anskrvices provided by component models in
general.

Component Model Elements

A component model is an architecture and set APIs that allow developers to define
software components that can be dynamically combined together to create an application. A
component model consists of two major elemetasaponents and containers

Componentscan range in size and capabilitpm smallGUI widgetslike a button, to
applet size functionality such as a tabular viewer to a more full sized applisatbras an
HTML browser of aext layoutapplication.Componentscan have a visual appearance
such as a button, otan benon-visual, such as telemetry data feed monitoring
component.

Containers are used to hold an assembly dateglcomponents. Containers provide the
context for components to be arranged ainteractwith one another. Containers are
sometimes referred to afrms, pages,frames or shells. Containers canalso be
components, i.e. a container can be used as a component inside another container.
Component Model Services

A component typically provides five major types of services:

. Component Interface Publishing and Discovery
. Event Handling

. Persistence

. Layout

. Application Builder Support
These are described in greater detail below.

Runtime Component Interface Publishing and Discovery

125

X2000 Software Architecture Definition 5/12/97

This is the mechanism for components to "publish” or "register"” their interfaces so that they
can be"driven" dynamically by calls and event notifications from other components or
application s. In ground station example, this publishing and discovery mechanism is what
allows the telemetry point componentaskthe stip charting component tdraw a graph

of its data.Since the strip charting componehas "registered” itdnterfaces to the
component environment, the strip charting compouleis notneed to be of the same
application "build" as the telemetry point component. Instead, even though they were built

separately, theycan interact in a dynamigvay using the services provided by the
component environment.

Event Handling

Event Handling is the mechanism for components to "raise"” or "broadcast" evehtsrand
those events delivered the appropriate componef#) that need owant to be notified.
Notified components in turrtypically perform some function. For example, if the
developer of the control center application provided a button for the user to select between a
CVT chart or a line graph, the event handling systems would notify the charting component
when the user clicked on the button component.

In addition to system events suchctisking the moge, components can define their own
events. For example, eomponent thatmonitors alive data feedsuch astelemetry
information or thepower status of antenna or a change in the data rate ofFtBE. The

"data changed" event could be handled by a variety of other components to sound an alarm,
change a visual display or start another process.

Persistence

Persistence ithe mechanisnfor storingthe state of components in a non-volaglace.
Component state istored inthe context of the container and in relationship to other
components. For example,tife Principle Investigator wanted $avethe on-line science
web page with theirtelemetry health informatiorand chosencharts, the persistence
mechanism would support this.

Layout

There are two major types of layout control which component medelgort. Firstthey
provide a way for garticular component to control its visual appearance within its own
space. Seconatomponent models provide mechanisms and serfarea component's
layout in relation to other components insidec@tainer. This includes services for
handling appropriate behaviawhen the component is activatedcor some types of
components this may include such things as menu bar merging.

For the great majority of applications, layout requirements for components in the context of
a container are straigfibrward. Most component layout requirements are satisfied by
giving each component a non-overlapping rectangular space. Developers control the lay out
the componentébuttons, viewers etc.) in a logical, easy to osener thasupports the
application's functionality. End users do not rearrange the components at runtime.

Application Builder Support

126

X2000 Software Architecture Definition 5/12/97

Application BuilderSupportinterfaces enable componentsexposetheir properties and
behaviors toApplication Builder Development té& Using these interfaces, tools can
determine the properties and behaviors (events and methods) of adwtrgygnents. The

tools can the provide mechanisnssich astool palettes,inspectors, editors which the
application developemuses to work withthe various components to assemble an
application. Through these mechanisms the application developer can modify the state and
appearance of components application developer can modify the state and appearance of
components as well as establish relationship between components.

For examplelet's look atthe button and charting componeftsm our on-line banking
example .Recall thatwhenthe end-user pressdbe button the chadwitches from a bar
chart to a linegraph. When assembling this applicatiotme application developenses
property editors to specifthe appearancgsize, colorlabel) of the button and the default
type of chart (bar chart) tisplay. The developeusesother application development tool
mechanisms to specify the relationship betweenbtltéon's "click” event and thechart
component's "chart type" property.

Distributed Computing

In addition to these five maja@ervices,component models often provide a strategy for
using the components in distributed computing environment. For example, a
component that monitors the status of an encounter sequenaeimary a server atthed

to thatmachine. If adata valuechangesthe server componennay raise an evemwhich
gets delivered over the network to another software component running I desktop
machine.The desktop component could theaspond appropriately, perhaps posting a
message, or changing the shape of a graph.

Clearly, there is a big difference betwesnftware components insating on a single
computer and components interacting ovenedwork. Besidesneeding to take into
consideration thelower speeds of a networlje developer and distributed computing
infrastructure also need to provide appropriate recovery and re-synchronization
mechanisms should either component or machine fail in some fashion.

Attempting to simply extend a singtleachinedesktop componemhodel toencompass all

the requirements demanded by complex heterogeneous networked computing environments
is fraught with problems and trade-offs. The desktop companedél will either become
burdened with more compleXPIs andheavier weight executioenvironments, or the
distributed computing capabilities will be less than robust.

Consequently,component modelghat are serious about providing full distributed
computing capabilities will leveragebust established distributedmputing technologies
such as CORBA. This way the singtechine component model can be kept compact and
light weight, while also providing access to rich functionalihat may berequired by
distributed applications.

The next section of this document discusses Java Bedins agontext of the elements and
services that comprise a software component model.

Java Beans API Highlights

127

X2000 Software Architecture Definition 5/12/97

Java Beans is an architecture and platform neutral API for building and using dynamic Java
component and containdunctions, and provides se&ss tothe five major component
model services outlined above, namely:

» Component Interface Publishing and Discovery
* Event Handling

» Persistence

* Layout

» Application Builder Support

Java Beans componemtodel servicescan be implemented b¥ridging to specific
component models, including Microsoft's OLE/COM, CI Lab's OpenDoc, Netscape's Live
Connect. Inaddition Java Beans willun on JavaSoft's embeddable JavaOS.
Libraries bridge the Java Bean API to the various component model
implementations.

Thus, a developer can build components completely in Java using fully portable Java Beans
APIls. Developers will not have to intersperse non-portable platform or comporoet

specific calls in their portable Jacade.The Java platform (which wilinclude the Java
Beans APIs) allowsomponent developers to write bdtre functional capabilities and
component behavior aspects of a component completely in Java.

Java Beans components raise the Java notibwrite once, use anywhere"to a
new level. Java Beans integrate in a high quality way into a variety of contamncirding
Netscape (using Javascript and LiveConnect), in HotJavatled Java containers, and
Microsoft containers(such as ExploreryVisual Basic, Windows Shelland Word),
OpenDoccontainers, an@®LE containerssuch as PowerBuildeBDelphi and other visual
builder tools that support OLE/COM.

Java Beans services will be part of the Java platform. This means that dewsidperst
need to distribute any extra libraries in order for applets andapplications
built using Java Beans towork. In addition, Java Beansill be able to beused
outside of containers as independent Java applets which can communicate dynamically.

The Java Beans platform and architecture neutral APl in combination with
the fact that a Java component's full functional implementation is alsdully
portable make Java Beans highly re-useable Unlike with other component
models, Java Bearae notbound to aparticular platform or container or component
model. Consequently, JPL developers of Java Bealhshe able to targetll future
missions.

Consumers of componens.g JPLFlight andGround System®evelopers) will get the
highest leverage from the purchase and time spent learnugeta Jav@8eancomponent.
They will be able tore-use Java Beans in a widariety of Internet, Intranet and even
proprietary client/server applications.

The following section provides some insighito the design goals an@haracteristics
developers can expect to see in the Java Beans API.

Design Goals

128

X2000 Software Architecture Definition 5/12/97

The major design goals of the Java Beans APl and implementation approach are:

Java Beans isompactand easy ta@reateanduse.Java Beangan bevery compact and
simple to create. In particuléine simple components will beery easy. Buildingmore
complex components in Java will lpossible as well. Byfully leveraging the Java
platform's functionality they can also be kept very compact.

Existing component modé\Pls have emerged by scalindgown from complex heavy
weight application size component to include lighter weight widget congponents. In
contrast, Java Beans AFiave been designed by scaling up from simpler lighter weight
widgets, appletsand applicationsowardsmore full function applicationsConsequently,

the Java Beans API will not overburdeine smaller widget and applet size components
with complexity andwveight. Since these smaller sized componentsrmaost prevalently
used,JavaBeans'compactdesign will be advantageous to both component builders and
component consumers.

Java Beans is fully portable.

Java Beanare fully portablethroughthe platform neutralava Beans API and bridging
libraries that will be part of thetandard Java platform. As a result, developghsnot

need to include non-portable code or be concerned with including platform-specific libraries
with their Java applets.

Java Beans leverage many of the inherent strengths dataePlatform. Java Beatakes
advantage of the existirgass discovery mechanisaiready built into theJava platform.
This mechanisnuses Java'sinique introspection and reflectigachnology. Thismeans
that Java does not need to introduce additional, heavier

weight registration mechanisms to the runtime stpport interface publishing and
discovery.

In addition, consistent witflava'soverall designcenter ofusing light weight and easily
understandable mechanisms, many Java Beans will not require any additional programming
by the developer. For examplbstract Window TechnologfAWT) components will be

Java Beans automatically.

The Java Beans libraries will also providiefault component behaviof®r simple
components. For examplaytomaticpersistence will be handlagsing Java serialization.

In addition Java Beans will providaitomatic generation giroperty editors by examining

a component'glet and semethods. Of coursecomponent developers will bable to
override the default behavior as may be required by more complex components or a desire
to provide richer component editors. Finally, Java Beans components will also benefit from
the new AWT desktopintegration capabilitiesuch as cut-copy-paste and drag-and-drop
interfaces.

Java Beans leveragesbust distributedcomputing mechanisms. Java Beaonmponent

model APIs andimplementation aréocused on components interacting in a singteual
machine. Rather than over complicating the Java Beans API or burdening the Java platform
with heavier weight distributed computing

mechanisms, Java developeifl be able tochose among several distributed computing
approaches. For example, developers wilabke toadd distributed component interaction

129

X2000 Software Architecture Definition 5/12/97

to their Java applications hysing Java'sRemote Methodnvocation, by using industry
standard CORBA IDL interfacesfor remote objectaccess, or byother distributed
computing mechanism®evelopers will be able tohosethe mechanism thdiest suits
their portability, performance and legacy integration requirements.

Flexible build-time component editors.

Java Beans will allow component developers to specify a broadety of build-time
property sheets, inspectors and editors for their componentswillngdlow developers to
provide themost productiveway for componentusers toreap the full value form
component capabilitieszor example, alatabase connection component proviaeight

want to provide more thanlang, complicatedproperty sheetor the developer tase at

build time. Instead the component provider might want to organize the various properties in
tabbed sections or perhaps allow the component user to visually dpetafpins at build

time. TheJava Beandpplication Builder ToolAPIs will support a way focomponent
developers to create the best type of property editor for their component type.

Conclusion

Java Beans further enhance the portable Java platform by addiriguwe¢svofdynamism,
flexibility and re-use. Java Beantake the component assembly model of
application development to a newlevel. Java Beangre compact, easy touild,

fully portable, and re-useable in the broadest number of containers and environments. Java
and Java Beans will enable JPL developers powerfukaciting new types oembedded
applications for space missions, “mission oriented” Intranet applications and Internet inter-
activity for the science and academic communities.

130

X2000 Software Architecture Definition 5/12/97

11.9 JTAG testability

Flight Hardware Test/BIST
JTAG IEEE 1149.1 Standard

With increased silicon complexityand shrinking IC packaging geometry, board
interconnect validatioas become difficult and expensivgsing conventionalPCB and

MCM testing. ThelEEE 1149.1 standard’grimary objective is to enabkystem users to
control and observe a device's input and output pins for the purpose of interconnect testing.
This protocol also ensures interoperability between components in a system.

The implementation of daTAG testability architecture in a flighdystem would not only
allow circuit and interface verification at theC, MCM, and PCB levels,but also the
Systems level, while always allowing for future expansiocoitld also baused for high
resolution onboard flighbteath diagnosis/determination, or even function as an additional
Systems level data bus should it ever became necessary.

131

